Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract We discuss transforming STEM education using three aspects: learning progressions (LPs), constructed response performance assessments, and artificial intelligence (AI). Using LPs to inform instruction, curriculum, and assessment design helps foster students’ ability to apply content and practices to explain phenomena, which reflects deeper science understanding. To measure the progress along these LPs, performance assessments combining elements of disciplinary ideas, crosscutting concepts and practices are needed. However, these tasks are time-consuming and expensive to score and provide feedback for. Artificial intelligence (AI) allows to validate the LPs and evaluate performance assessments for many students quickly and efficiently. The evaluation provides a report describing student progress along LP and the supports needed to attain a higher LP level. We suggest using unsupervised, semi-supervised ML and generative AI (GAI) at early LP validation stages to identify relevant proficiency patterns and start building an LP. We further suggest employing supervised ML and GAI for developing targeted LP-aligned performance assessment for more accurate performance diagnosis at advanced LP validation stages. Finally, we discuss employing AI for designing automatic feedback systems for providing personalized feedback to students and helping teachers implement LP-based learning. We discuss the challenges of realizing these tasks and propose future research avenues.more » « less
- 
            Abstract Argumentation, a key scientific practice presented in theFramework for K-12 Science Education, requires students to construct and critique arguments, but timely evaluation of arguments in large-scale classrooms is challenging. Recent work has shown the potential of automated scoring systems for open response assessments, leveraging machine learning (ML) and artificial intelligence (AI) to aid the scoring of written arguments in complex assessments. Moreover, research has amplified that the features (i.e., complexity, diversity, and structure) of assessment construct are critical to ML scoring accuracy, yet how the assessment construct may be associated with machine scoring accuracy remains unknown. This study investigated how the features associated with the assessment construct of a scientific argumentation assessment item affected machine scoring performance. Specifically, we conceptualized the construct in three dimensions: complexity, diversity, and structure. We employed human experts to code characteristics of the assessment tasks and score middle school student responses to 17 argumentation tasks aligned to three levels of a validated learning progression of scientific argumentation. We randomly selected 361 responses to use as training sets to build machine-learning scoring models for each item. The scoring models yielded a range of agreements with human consensus scores, measured by Cohen’s kappa (mean = 0.60; range 0.38 − 0.89), indicating good to almost perfect performance. We found that higher levels ofComplexityandDiversity of the assessment task were associated with decreased model performance, similarly the relationship between levels ofStructureand model performance showed a somewhat negative linear trend. These findings highlight the importance of considering these construct characteristics when developing ML models for scoring assessments, particularly for higher complexity items and multidimensional assessments.more » « less
- 
            Mills, Caitlin; Alexandron, Giora; Taibi, Davide; Lo_Bosco, Giosuè; Paquette, Luc (Ed.)Open-text responses provide researchers and educators with rich, nuanced insights that multiple-choice questions cannot capture. When reliably assessed, such responses have the potential to enhance teaching and learning. However, scaling and consistently capturing these nuances remain significant challenges, limiting the widespread use of open-text questions in educational research and assessments. In this paper, we introduce and evaluate GradeOpt, a unified multiagent automatic short-answer grading (ASAG) framework that leverages large language models (LLMs) as graders for short-answer responses. More importantly, GradeOpt incorporates two additional LLM-based agents—the reflector and the refiner—into the multi-agent system. This enables GradeOpt to automatically optimize the original grading guidelines by performing self-reflection on its errors. To assess GradeOpt's effectiveness, we conducted experiments on two representative ASAG datasets, which include items designed to capture key aspects of teachers' pedagogical knowledge and students' learning progress. Our results demonstrate that GradeOpt consistently outperforms representative baselines in both grading accuracy and alignment with human evaluators across different knowledge domains. Finally, comprehensive ablation studies validate the contributions of GradeOpt's individual components, confirming their impact on overall performance.more » « lessFree, publicly-accessible full text available July 12, 2026
- 
            Free, publicly-accessible full text available April 23, 2026
- 
            The Framework for K-12 Science Education recognizes modeling as an essential practice for building deep understanding of science. Modeling assessments should measure the ability to integrate Disciplinary Core Ideas and Crosscutting Concepts. Machine learning (ML) has been utilized to score and provide feedback on open-ended Learning Progression (LP)-aligned assessments. Analytic rubrics have been shown to be easier to evaluate the validity of ML-based scores. A possible drawback of using analytic rubrics is the potential for oversimplification of integrated ideas. We demonstrate the deconstruction of a 3D holistic rubric for modeling assessments aligned LP for Physical Science. We describe deconstructing this rubric into analytic categories for ML training and to preserve its 3D nature.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available