skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2202477

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Insect-scale robots face two major locomotive challenges: constrained energetics and large obstacles that far exceed their size. Terrestrial locomotion is efficient yet mostly limited to flat surfaces. In contrast, flight is versatile for overcoming obstacles but requires high power to stay aloft. Here, we present a hopping design that combines a subgram flapping-wing robot with a telescopic leg. Our robot can hop continuously while controlling jump height and frequency in the range of 1.5 to 20 centimeters and 2 to 8.4 hertz. The robot can follow positional set points, overcome tall obstacles, and traverse challenging surfaces. It can also hop on a dynamically rotating plane, recover from strong collisions, and perform somersaults. Compared to flight, this design reduces power consumption by 64 percent and increases payload by 10 times. Although the robot relies on offboard power and control, the substantial payload and efficiency improvement open opportunities for future study on autonomous locomotion. 
    more » « less
    Free, publicly-accessible full text available April 11, 2026
  2. Insects maintain remarkable agility after incurring severe injuries or wounds. Although robots driven by rigid actuators have demonstrated agile locomotion and manipulation, most of them lack animal-like robustness against unexpected damage. Dielectric elastomer actuators (DEAs) are a class of muscle-like soft transducers that have enabled nimble aerial, terrestrial, and aquatic robotic locomotion comparable to that of rigid actuators. However, unlike muscles, DEAs suffer local dielectric breakdowns that often cause global device failure. These local defects severely limit DEA performance, lifetime, and size scalability. We developed DEAs that can endure more than 100 punctures while maintaining high bandwidth (>400 hertz) and power density (>700 watt per kilogram)—sufficient for supporting energetically expensive locomotion such as flight. We fabricated electroluminescent DEAs for visualizing electrode connectivity under actuator damage. When the DEA suffered severe dielectric breakdowns that caused device failure, we demonstrated a laser-assisted repair method for isolating the critical defects and recovering performance. These results culminate in an aerial robot that can endure critical actuator and wing damage while maintaining similar accuracy in hovering flight. Our work highlights that soft robotic systems can embody animal-like agility and resilience—a critical biomimetic capability for future robots to interact with challenging environments. 
    more » « less