skip to main content


Title: Diffuse sources, clustering, and the excess anisotropy of the radio synchrotron background
ABSTRACT

We present the largest low frequency (120 MHz) arcminute resolution image of the radio synchrotron background (RSB) to date, and its corresponding angular power spectrum of anisotropies (APS) with angular scales ranging from 3° to 0.3 arcmin. We show that the RSB around the north celestial pole has a significant excess anisotropy power at all scales over a model of unclustered point sources based on source counts of known source classes. This anisotropy excess, which does not seem attributable to the diffuse Galactic emission, could be linked to the surface brightness excess of the RSB. To better understand the information contained within the measured APS, we model the RSB varying the brightness distribution, size, and angular clustering of potential sources. We show that the observed APS could be produced by a population of faint clustered point sources only if the clustering is extreme and the size of the Gaussian clusters is ≲1 arcmin. We also show that the observed APS could be produced by a population of faint diffuse sources with sizes ≲1 arcmin, and this is supported by features present in our image. Both of these cases would also cause an associated surface brightness excess. These classes of sources are in a parameter space not well probed by even the deepest radio surveys to date.

 
more » « less
Award ID(s):
1908960 2209420 1914409
NSF-PAR ID:
10426637
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
523
Issue:
4
ISSN:
0035-8711
Page Range / eLocation ID:
p. 5034-5046
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We present the first targeted measurement of the power spectrum of anisotropies of the radio synchrotron background, at 140 MHz, where it is the overwhelmingly dominant photon background. This measurement is important for understanding the background level of radio sky brightness, which is dominated by steep-spectrum synchrotron radiation at frequencies below ν ∼ 0.5 GHz and has been measured to be significantly higher than that produced by known classes of extragalactic sources and most models of Galactic halo emission. We determine the anisotropy power spectrum on scales ranging from 2° to 0.2 arcmin with Low-Frequency Array observations of two 18-deg2 fields – one centred on the Northern hemisphere’s coldest patch of radio sky where the Galactic contribution is smallest and the other offset from that location by 15°. We find that the anisotropy power is higher than that attributable to the distribution of point sources above 100 $\mu$Jy in flux. This level of radio anisotropy power indicates that if it results from point sources, those sources are likely at low fluxes and incredibly numerous, and likely clustered in a specific manner. 
    more » « less
  2. ABSTRACT

    We identify a source (J1507+3013) with an extended diffuse radio emission around an elliptical galaxy from the Very Large Array (VLA) Faint Images of Radio Sky at Twenty-cm (FIRST) survey. J1507+3013 possesses a morphology similar to the recently identified circular, low-surface-brightness, edge-brightened radio sources commonly known as odd radio circles (ORCs). Such diffuse emissions, as reported in this paper, are also found in mini-haloes and fossil radio galaxies, but the results presented here do not match the properties of mini-haloes or of fossil radio galaxies. The extended emission observed in J1507+3013 around an elliptical galaxy is a very rare class of diffuse emission that is unlike any previously known class of diffuse emission. The extended diffuse emission of J1507+3013 is also detected in the Low Frequency Array (LOFAR) at 144 MHz. J1507+3013 is hosted by an optical galaxy near the geometrical centre of the structure with a photometric redshift of z = 0.079. The physical extent of J1507+3013 is approximately 68 kpc, with a peak-to-peak angular size of 44 arcsec. It shows significantly higher flux densities compared with previously discovered ORCs. The spectral index of J1507+3013 varies between −0.90 and −1.4 in different regions of the diffuse structure, which is comparable to the case for previously discovered ORCs but less steep than for mini-haloes and fossil radio galaxies. If we consider J1507+3013 as a candidate ORC, then this would be the closest and most luminous ORC discovered so far. This paper describes the radio, spectral, and optical/IR properties of J1507+3013 in order to study the nature of this source.

     
    more » « less
  3. MeerKAT’s large number (64) of 13.5 m diameter antennas, spanning 8 km with a densely packed 1 km core, create a powerful instrument for wide-area surveys, with high sensitivity over a wide range of angular scales. The MeerKAT Galaxy Cluster Legacy Survey (MGCLS) is a programme of long-track MeerKAT L -band (900−1670 MHz) observations of 115 galaxy clusters, observed for ∼6−10 h each in full polarisation. The first legacy product data release (DR1), made available with this paper, includes the MeerKAT visibilities, basic image cubes at ∼8″ resolution, and enhanced spectral and polarisation image cubes at ∼8″ and 15″ resolutions. Typical sensitivities for the full-resolution MGCLS image products range from ∼3−5 μJy beam −1 . The basic cubes are full-field and span 2° × 2°. The enhanced products consist of the inner 1.2° × 1.2° field of view, corrected for the primary beam. The survey is fully sensitive to structures up to ∼10′ scales, and the wide bandwidth allows spectral and Faraday rotation mapping. Relatively narrow frequency channels (209 kHz) are also used to provide H  I mapping in windows of 0 <  z  < 0.09 and 0.19 <  z  < 0.48. In this paper, we provide an overview of the survey and the DR1 products, including caveats for usage. We present some initial results from the survey, both for their intrinsic scientific value and to highlight the capabilities for further exploration with these data. These include a primary-beam-corrected compact source catalogue of ∼626 000 sources for the full survey and an optical and infrared cross-matched catalogue for compact sources in the primary-beam-corrected areas of Abell 209 and Abell S295. We examine dust unbiased star-formation rates as a function of cluster-centric radius in Abell 209, extending out to 3.5 R 200 . We find no dependence of the star-formation rate on distance from the cluster centre, and we observe a small excess of the radio-to-100 μm flux ratio towards the centre of Abell 209 that may reflect a ram pressure enhancement in the denser environment. We detect diffuse cluster radio emission in 62 of the surveyed systems and present a catalogue of the 99 diffuse cluster emission structures, of which 56 are new. These include mini-halos, halos, relics, and other diffuse structures for which no suitable characterisation currently exists. We highlight some of the radio galaxies that challenge current paradigms, such as trident-shaped structures, jets that remain well collimated far beyond their bending radius, and filamentary features linked to radio galaxies that likely illuminate magnetic flux tubes in the intracluster medium. We also present early results from the H  I analysis of four clusters, which show a wide variety of H  I mass distributions that reflect both sensitivity and intrinsic cluster effects, and the serendipitous discovery of a group in the foreground of Abell 3365. 
    more » « less
  4. ABSTRACT

    Deep radio surveys of extragalactic legacy fields trace a large range of spatial and brightness temperature sensitivity scales, and therefore have differing biases to radio-emitting physical components within galaxies. This is particularly true of radio surveys performed at $\lesssim 1 \ \mathrm{arcsec}$ angular resolutions, and so robust comparisons are necessary to better understand the biases present in each survey. We present a multiresolution and multiwavelength analysis of the sources detected in a new Very Long Baseline Array (VLBA) survey of the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey Great Observatories Origins Deep Survey-North field. For the 24 VLBA-selected sources described in Paper I, we augment the VLBA data with EVN data, and ∼0.1–1 arcsec angular resolution data provided by Very Large Array (VLA) and enhanced-Multi Element Remotely Linked Interferometry Network. This sample includes new active galactic nuclei (AGN) detected in this field, thanks to a new source extraction technique that adopts priors from ancillary multiwavelength data. The high brightness temperatures of these sources (TB ≳ 106 K) confirm AGN cores, that would often be missed or ambiguous in lower-resolution radio data of the same sources. Furthermore, only 15 sources are identified as ‘radiative’ AGN based on available X-ray and infrared constraints. By combining VLA and VLBA measurements, we find evidence that the majority of the extended radio emission is also AGN dominated, with only three sources with evidence for extended potentially star formation-dominated radio emission. We demonstrate the importance of wide-field multiresolution (arcsecond–milliarcsecond) coverage of the faint radio source population, for a complete picture of the multiscale processes within these galaxies.

     
    more » « less
  5. Abstract

    The Time Domain Field (TDF) near the North Ecliptic Pole in JWST’s continuous-viewing zone will become a premier “blank field” for extragalactic science. JWST/NIRCam data in a 16 arcmin2portion of the TDF identify 4.4μm counterparts for 62 of 63 3 GHz sources withS(3 GHz) > 5μJy. The one unidentified radio source may be a lobe of a nearby Seyfert galaxy, or it may be an infrared-faint radio source. The bulk properties of the radio-host galaxies are consistent with those found by previous work: redshifts range from 0.14–4.4 with a median redshift of 1.33. The radio emission arises primarily from star formation in ∼2/3 of the sample and from an active galactic nucleus (AGN) in ∼1/3, but just over half the sample shows evidence for an AGN either in the spectral energy distribution or by radio excess. All but three counterparts are brighter than magnitude 23 AB at 4.4μm, and the exquisite resolution of JWST identifies correct counterparts for sources for which observations with lower angular resolution would misidentify a nearby bright source as the counterpart when the correct one is faint and red. Up to 11% of counterparts might have been unidentified or misidentified absent NIRCam observations.

     
    more » « less