Abstract There is a consensus that volcanism along the East African Rift System (EARS) is related to plume activities. However, because of our limited knowledge of the local lithospheric mantle, the dynamics of the plume are poorly constrained by magma chemistry. The Turkana Basin is one of the best places to study plume‐related volcanism because the lithospheric mantle there is unusually thin. New Ar‐Ar geochronology and geochemical data on lavas from western Turkana show that Eocene volcanics have relatively low206Pb/204Pb (<19.1) and high εNd (>3.78). Their relatively high Ba/Rb (35–78) ratios suggest contributions from the shallow lithospheric mantle. Oligo‐Miocene Turkana volcanics have HIMU‐ and EMI‐ type enriched mantle signatures with overall lower Ba/Rb ratios, which is consistent with partial melting of plume material. Pliocene and younger Turkana volcanics have low Ba/Rb and Sr‐Nd‐Pb isotope ratios that resemble those of Ethiopian volcanics with elevated3He/4He ratios. This temporal variation can be reconciled with a layered plume model where an outer layer of ancient recycled oceanic crust and sediment overlies more primitive lower mantle material. Beneath Ethiopia, the outer layer of the plume is either missing or punctured by the delamination of the thicker overlying lithospheric mantle atca.30 Ma, an event that would have facilitated the rapid upwelling of the inner portion of the plume and triggered the Ethiopian flood volcanism. The outer layer of the plume may be thicker in the southern EARS, which could explain the occurrence of young HIMU‐ and EMI‐type volcanics with primordial noble gas signatures.
more »
« less
Strong seismic anisotropy due to upwelling flow at the root of the Yellowstone mantle plume
Abstract The Yellowstone region (western United States) is a commonly cited example of intraplate volcanism whose origin has been a topic of debate for several decades. Recent work has suggested that a deep mantle plume, rooted beneath southern California, is the source of Yellowstone volcanism. Seismic anisotropy, which typically results from deformation, can be used to identify and characterize mantle flow. Here, we show that the proposed plume root location at the base of the mantle is strongly seismically anisotropic. This finding is complemented by geodynamic modeling results showing upwelling flow and high strains in the lowermost mantle beneath the Yellowstone region. Our results support the idea that the Yellowstone volcanism is caused by a plume rooted in the deepest mantle beneath southern California, connecting dynamics in the deepest mantle with phenomena at Earth's surface.
more »
« less
- PAR ID:
- 10516182
- Publisher / Repository:
- Geological Society of America
- Date Published:
- Journal Name:
- Geology
- Volume:
- 52
- Issue:
- 5
- ISSN:
- 0091-7613
- Page Range / eLocation ID:
- 379 to 382
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Volcanic evolution in ocean island settings is often controlled by variations in the chemistry and volumetric flux of magma from an underlying mantle plume. In locations such as Hawaiʻi or Réunion, this results in predictable variations in magma chemistry, the rate of volcanic activity, and the depth of magma storage with volcanic age and/or distance from the centre of plume upwelling. These systems, however, represent outliers in global plume volcanism due to their high buoyancy flux, frequent eruptions, and large distance from any plate boundary. Most mantle plumes display clear interaction with nearby plate boundaries, influencing the dynamics of solid plume material in the upper mantle and the distribution of melt across regions of active volcanism. Yet, the influence of plume–ridge interaction and plume–ridge distance on the structure, characteristics, and evolution of magma storage beneath ocean island volcanoes remains under constrained. In this study, we consider the evolution of magmatic systems in the Galápagos Archipelago, a region of mantle plume volcanism located 150–250 km south of the Galápagos Spreading Centre (GSC), focusing on the depth of magma storage during the eastward transport of volcanic systems away from the centre of plume upwelling. Geochemical analysis of gabbro xenoliths from Isla Floreana in the southeastern Galápagos suggest that they formed at ~2–2.5 Ma, when the island was located close to the centre of plume upwelling. These nodules, therefore, provide rare insights into the evolution of volcanic systems in the Galápagos Archipelago, tracking variations in the magma system architecture as the Nazca plate carried Isla Floreana eastwards, away from the plume centre. Mineral thermobarometry, thermodynamic modelling, and CO2 fluid inclusion barometry reveal that Isla Floreana’s plume-proximal stage of volcanic activity—recorded in the gabbro xenoliths—was characterized by the presence of high-pressure magma storage (>25 km), below the base of the crust. In fact, we find no petrological evidence that sustained, crustal-level magma storage ever occurred beneath Isla Floreana. Our results contrast with the characteristics of volcanic systems in the western Galápagos above the current centre of plume upwelling, where mid-crust magma storage has been identified. We propose that this change in magmatic architecture of plume-proximal volcanic centres in the Galápagos—from high-pressure mantle storage at 2.5 Ma to mid-crustal storage at the present day—is controlled by the variations in plume–ridge distance. Owing to the northward migration of the GSC, the distance separating the plume stem and GSC is not constant, and was likely <100 km at 2.5 Ma, significantly less than the current plume–ridge distance of 150–250 km. We propose that smaller plume–ridge distances result in greater diversion of plume-material to the GSC, ‘starving’ the eastern Galápagos islands of magma during their initial formation and restricting the ability for these systems to develop long-lived crustal magma reservoirs.more » « less
-
null (Ed.)Abstract The deployment of seismic stations and the development of ambient noise tomography and new analysis methods provide an opportunity for higher resolution imaging of Antarctica. Here we review recent seismic structure models and describe their implications for the dynamics and history of the Antarctic upper mantle. Results show that most of East Antarctica is underlain by continental lithosphere to depths of ∼ 200 km. The thickest lithosphere is found in a band 500-1000 km west of the Transantarctic Mountains, representing the continuation of cratonic lithosphere with Australian affinity beneath the ice. Dronning Maud Land and the Lambert Graben show much thinner lithosphere, consistent with Phanerozoic lithospheric disruption. The Transantarctic Mountains mark a sharp boundary between cratonic lithosphere and the warmer upper mantle of West Antarctica. In the Southern Transantarctic Mountains, cratonic lithosphere has been replaced by warm asthenosphere, giving rise to Cenozoic volcanism and an elevated mountainous region. The Marie Byrd Land volcanic dome is underlain by slow seismic velocities extending through the transition zone, consistent with a mantle plume. Slow velocity anomalies beneath the coast from the Amundsen Sea Embayment to the Antarctic Peninsula likely result from upwelling of warm asthenosphere during subduction of the Antarctic-Phoenix spreading center.more » « less
-
Abstract Observations of seismic waves that have passed through the Earth's lowermost mantle provide insight into deep mantle structure and dynamics, often on relatively small spatial scales. Here we use SKS, S2KS, S3KS, and PKS signals recorded across a large region including the United States, Mexico, and Central America to study the deepest mantle beneath large swaths of North America and the northeastern Pacific Ocean. These phases are enhanced via beamforming and then used to investigate polarization‐ and propagation direction‐dependent shear wave speeds (seismic anisotropy). A differential splitting approach enables us to robustly identify contributions from anisotropy. Our results show strong seismic anisotropy in approximately half of our study region, indicating that anisotropy may be more prevalent than commonly thought. In some regions, the anisotropy may be induced by flow driven by sinking cold slabs, and in other, more compact regions, by upwelling flow. Measured splitting due to lowermost mantle anisotropy is sufficiently strong to be non‐negligible in interpretations of SKS splitting due to upper mantle anisotropy in certain regions, which may prompt future re‐evaluations of upper mantle anisotropy beneath North and Central America.more » « less
-
We present an upper mantle P-wave velocity model for the Ross Sea Embayment (RSE) region of West Antarctica, constructed by inverting relative P-wave travel-times from 1881 teleseismic earthquakes recorded by two temporary broadband seismograph deployments on the Ross Ice Shelf, as well as by regional ice- and rock-sited seismic stations surrounding the RSE. Faster upper mantle P-wave velocities (∼ +1%) characterize the eastern part of the RSE, indicating that the lithosphere in this part of the RSE may not have been reheated by mid-to-late Cenozoic rifting that affected other parts of the Late Cretaceous West Antarctic Rift System. Slower upper mantle velocities (∼ −1%) characterize the western part of the RSE over a ∼500 km-wide region, extending from the central RSE to the Transantarctic Mountains (TAM). Within this region, the model shows two areas of even slower velocities (∼ −1.5%) centered beneath Mt. Erebus and Mt. Melbourne along the TAM front. We attribute the broader region of slow velocities mainly to reheating of the lithospheric mantle by Paleogene rifting, while the slower velocities beneath the areas of recent volcanism may reflect a Neogene-present phase of rifting and/or plume activity associated with the formation of the Terror Rift. Beneath the Ford Ranges and King Edward VII Peninsula in western Marie Byrd Land, the P-wave model shows lateral variability in upper mantle velocities of ±0.5% over distances of a few hundred km. The heterogeneity in upper mantle velocities imaged beneath the RSE and western Marie Byrd Land, assuming no significant variation in mantle composition, indicates variations in upper mantle temperatures of at least 100◦C. These temperature variations could lead to differences in surface heat flow of ∼ ±10 mW/m2 and mantle viscosity of 102 Pa s regionally across the study area, possibly influencing the stability of the West Antarctic Ice Sheet by affecting basal ice conditions and glacial isostatic adjustment.more » « less
An official website of the United States government

