Abstract For the first time, high‐entropy rare‐earth monoclinic aluminate crystals were grown via directional solidification using the micro‐pulling‐down method. Five high‐entropy compositions were formulated with a general formula RE4Al2O9, where RE is an equiatomic mixture of five rare‐earth elements. The rare‐earth elements included were Lu, Yb, Er, Y, Ho, Dy, Tb, Gd, Eu, Sm, Nd, and La. High‐temperature powder X‐ray diffraction and Rietveld structure refinement indicated that all crystals were a single monoclinic phase and that rare‐earth average ionic radius did not affect phase purity. At room temperature, the refined lattice parameters increased consistently with increasing average ionic radii of the five compositions. One of the crystals had a typical high‐temperature phase transition of single‐RE RE4Al2O9in the range of 1100–1150°C, which consisted of a lattice contraction upon heating. Differential scanning calorimetry indicated a thermal event corresponding to that phase transition. Electron probe microanalysis revealed Al‐rich inclusions on the surface of the crystals. Crystals containing Tb had dark surface features that became lighter after annealing in a reducing atmosphere, which indicated that Tb4+may be responsible for the dark features. 
                        more » 
                        « less   
                    
                            
                            Magnetocaloric properties of TbCrO3 and TmCrO3 and their comparison with those of the other RCrO3 systems (R = Gd, Dy, Ho, and Er)
                        
                    
    
            Magnetocaloric properties of TbCrO3 and TmCrO3 are reported and compared with those of the previously reported rare-earth chromites RCrO3 (R = Gd, Dy, Ho, and Er) and other perovskite-type oxides. The samples of TbCrO3 and TmCrO3 in this work were synthesized using a citrate gel combustion technique, and their magnetic properties were investigated and compared with those reported previously on RCrO3 (R = Gd, Dy, Ho, and Er). The Cr3+–Cr3+ ordering temperatures were found to strongly depend on the ionic radii of the rare-earth. By fitting the dc magnetization data with modified Curie–Weiss law including the Dzyaloshinsky–Moriya antisymmetric exchange interaction (D) and the symmetric exchange constant Je, spin canting angles (α) were obtained. In general, α was found to increase with the decreasing ionic radii of R3+ in RCrO3. The magnetocaloric properties investigated included the magnetic entropy change (−ΔS) for a given change in magnetic field (ΔH), the corresponding adiabatic temperature change (ΔTad), and their relative variations (ΔTad/ΔH) and (−ΔS/ΔH). It is observed that for RCrO3, (−ΔS) measured in the vicinity of the ordering temperature of R3+–R3+, varies almost as G2/3 where G is the de Gennes factor. Among RCrO3, GdCrO3 shows the largest value of (−ΔS/ΔH), because of its largest G factor and its magnitudes of (ΔTad/ΔH) and (−ΔS/ΔH) compare well with the reported values for the perovskites GdFeO3 and EuTiO3. These comparisons presented here provide useful information on the potential use of these materials in magneto-refrigeration technology. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10463051
- Date Published:
- Journal Name:
- Journal of Applied Physics
- Volume:
- 134
- Issue:
- 10
- ISSN:
- 0021-8979
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Nine new rare earth magnesium-containing thiosilicates of the formula RE3Mg0.5SiS7 (Ln = Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er) were synthesized in an alkali halide flux using the boron chalcogen mixture (BCM) method. Crystals of high quality were produced, and their structures were determined by single-crystal X-ray diffraction. The compounds crystallize in the hexagonal crystal system in the P63 space group. Phase pure powders of the compounds were used for magnetic susceptibility measurements and for second harmonic generation (SHG) measurements. Magnetic measurements indicate that Ce3Mg0.5SiS7, Sm3Mg0.5SiS7, and Dy3Mg0.5SiS7 exhibit paramagnetic behavior with a negative Weiss temperature over the 2−300 K temperature range. SHG measurements of La3Mg0.5SiS7 demonstrated SHG activity with an efficiency of 0.16 times the standard potassium dihydrogen phosphate (KDP).more » « less
- 
            The synthesis of a novel family of homoleptic COT-based heterotrimetallic self-assemblies bearing the formula [LnKCa(COT) 3 (THF) 3 ] (Ln( iii ) = Gd, Tb, Dy, Ho, Er, Tm, and Yb) is reported followed by their X-ray crystallographic and magnetic characterization. All crystals conform to the monoclinic P 2 1 / c space group with a slight compression of the unit cell from 3396.4(2) Å 3 to 3373.2(4) Å 3 along the series. All complexes exhibit a triple-decker structure having the Ln( iii ) and K( i ) ions sandwiched by three COT 2− ligands with an end-bound {Ca 2+ (THF) 3 } moiety to form a non-linear (153.5°) arrangement of three different metals. The COT 2− ligands act in a η 8 -mode with respect to all metal centers. A detailed structural comparison of this unique set of heterotrimetallic complexes has revealed consistent trends along the series. From Gd to Yb, the Ln to ring-centroid distance decreases from 1.961(3) Å to 1.827(2) Å. In contrast, the separation of K( i ) and Ca( ii ) ions from the COT-centroid (2.443(3) and 1.914(3) Å, respectively) is not affected by the change of Ln( iii ) ions. The magnetic property investigation of the [LnKCa(COT) 3 (THF) 3 ] series (Ln( iii ) = Gd, Tb, Dy, Ho, Er, and Tm) reveals that the Dy, Er, and Tm complexes display slow relaxation of their magnetization, in other words, single-molecule magnet (SMM) properties. This behaviour is dominated by thermally activated (Orbach-like) and quantum tunneling processes for [DyKCa(COT) 3 (THF) 3 ] in contrast to [ErKCa(COT) 3 (THF) 3 ], in which the thermally activated and Raman processes appear to be relevant. Details of the electronic structures and magnetic properties of these complexes are further clarified with the help of DFT and ab initio theoretical calculations.more » « less
- 
            A magnetocaloric effect (MCE) with sizable isothermal entropy change (ΔS) maintained over a broad range of temperatures above the blocking temperature is reported for a rare earth-free superparamagnetic nanoparticle system comprising of Fe–TiN heterostructure. Superparamagnetic iron (Fe) particles were embedded in a titanium nitride (TiN) thin film matrix in a TiN/Fe/TiN multilayered pattern using a pulsed laser deposition method. High angle annular dark-field images in conjunction with dispersive energy analysis, recorded using scanning transmission electron microscopy, show a clear presence of alternating layers of Fe and TiN with a distinct atomic number contrast between Fe particles and TiN. Quantitative information about the isothermal entropy change (ΔS) and the magnetocaloric effect in the multilayer Fe–TiN system has been obtained by applying Maxwell relation to the magnetization vs temperature data at various fields. With the absence of a dynamic magnetic hysteresis above the blocking temperature, the negative ΔS as high as 4.18 × 103 J/Km3 (normal or forward MCE) is obtained at 3 T at 300 K.more » « less
- 
            Lanthanide metallocenophanes are an intriguing class of organometallic complexes that feature rare six-coordinate trigonal prismatic coordination environments of 4f elements with close intramolecular proximity to transition metal ions. Herein, we present a systematic study of the structural and magnetic properties of the ferrocenophanes, [LnFc 3 (THF) 2 Li 2 ] − , of the late trivalent lanthanide ions (Ln = Gd ( 1 ), Ho ( 2 ), Er ( 3 ), Tm ( 4 ), Yb ( 5 ), Lu ( 6 )). One major structural trend within this class of complexes is the increasing diferrocenyl (Fc 2− ) average twist angle with decreasing ionic radius ( r ion ) of the central Ln ion, resulting in the largest average Fc 2− twist angles for the Lu 3+ compound 6 . Such high sensitivity of the twist angle to changes in r ion is unique to the here presented ferrocenophane complexes and likely due to the large trigonal plane separation enforced by the ligand (>3.2 Å). This geometry also allows the non-Kramers ion Ho 3+ to exhibit slow magnetic relaxation in the absence of applied dc fields, rendering compound 2 a rare example of a Ho-based single-molecule magnet (SMM) with barriers to magnetization reversal ( U ) of 110–131 cm −1 . In contrast, compounds featuring Ln ions with prolate electron density ( 3–5 ) don't show slow magnetization dynamics under the same conditions. The observed trends in magnetic properties of 2–5 are supported by state-of-the-art ab initio calculations. Finally, the magneto-structural relationship of the trigonal prismatic Ho-[1]ferrocenophane motif was further investigated by axial ligand (THF in 2 ) exchange to yield [HoFc 3 (THF*) 2 Li 2 ] − ( 2-THF* ) and [HoFc 3 (py) 2 Li 2 ] − ( 2-py ) motifs. We find that larger average Fc 2− twist angles (in 2-THF* and 2-py as compared to in 2 ) result in faster magnetic relaxation times at a given temperature.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    