skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2309467

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Arctic–Boreal Zone is rapidly warming, impacting its large soil carbon stocks. Here we use a new compilation of terrestrial ecosystem CO2fluxes, geospatial datasets and random forest models to show that although the Arctic–Boreal Zone was overall an increasing terrestrial CO2sink from 2001 to 2020 (mean ± standard deviation in net ecosystem exchange, −548 ± 140 Tg C yr−1; trend, −14 Tg C yr−1;P < 0.001), more than 30% of the region was a net CO2source. Tundra regions may have already started to function on average as CO2sources, demonstrating a shift in carbon dynamics. When fire emissions are factored in, the increasing Arctic–Boreal Zone sink is no longer statistically significant (budget, −319 ± 140 Tg C yr−1; trend, −9 Tg C yr−1), and the permafrost region becomes CO2neutral (budget, −24 ± 123 Tg C yr−1; trend, −3 Tg C yr−1), underscoring the importance of fire in this region. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. Summary Plant phenology, the timing of recurrent biological events, shows key and complex response to climate warming, with consequences for ecosystem functions and services. A key challenge for predicting plant phenology under future climates is to determine whether the phenological changes will persist with more intensive and long‐term warming.Here, we conducted a meta‐analysis of 103 experimental warming studies around the globe to investigate the responses of four phenophases – leaf‐out, first flowering, last flowering, and leaf coloring.We showed that warming advanced leaf‐out and flowering but delayed leaf coloring across herbaceous and woody plants. As the magnitude of warming increased, the response of most plant phenophases gradually leveled off for herbaceous plants, while phenology responded in proportion to warming in woody plants. We also found that the experimental effects of warming on plant phenology diminished over time across all phenophases. Specifically, the rate of changes in first flowering for herbaceous species, as well as leaf‐out and leaf coloring for woody species, decreased as the experimental duration extended.Together, these results suggest that the real‐world impact of global warming on plant phenology will diminish over time as temperatures continue to increase. 
    more » « less
  3. Abstract Tundra and boreal ecosystems encompass the northern circumpolar permafrost region and are experiencing rapid environmental change with important implications for the global carbon (C) budget. We analysed multi-decadal time series containing 302 annual estimates of carbon dioxide (CO2) flux across 70 permafrost and non-permafrost ecosystems, and 672 estimates of summer CO2flux across 181 ecosystems. We find an increase in the annual CO2sink across non-permafrost ecosystems but not permafrost ecosystems, despite similar increases in summer uptake. Thus, recent non-growing-season CO2losses have substantially impacted the CO2balance of permafrost ecosystems. Furthermore, analysis of interannual variability reveals warmer summers amplify the C cycle (increase productivity and respiration) at putatively nitrogen-limited sites and at sites less reliant on summer precipitation for water use. Our findings suggest that water and nutrient availability will be important predictors of the C-cycle response of these ecosystems to future warming. 
    more » « less
  4. Abstract Accelerated warming of the Arctic can affect the global climate system by thawing permafrost and exposing organic carbon in soils to decompose and release greenhouse gases into the atmosphere. We used a process-based biosphere model (DVM-DOS-TEM) designed to simulate biophysical and biogeochemical interactions between the soil, vegetation, and atmosphere. We varied soil and environmental parameters to assess the impact on cryohydrological and biogeochemical outputs in the model. We analyzed the responses of ecosystem carbon balances to permafrost thaw by running site-level simulations at two long-term tundra ecological monitoring sites in Alaska: Eight Mile Lake (EML) and Imnavait Creek Watershed (IMN), which are characterized by similar tussock tundra vegetation but differing soil drainage conditions and climate. Model outputs showed agreement with field observations at both sites for soil physical properties and ecosystem CO2fluxes. Model simulations of Net Ecosystem Exchange (NEE) showed an overestimation during the frozen season (higher CO2emissions) at EML with a mean NEE of 26.98 ± 4.83 gC/m2/month compared to observational mean of 22.01 ± 5.67 gC/m2/month, and during the fall months at IMN, with a modeled mean of 19.21 ± 7.49 gC/m2/month compared to observation mean of 11.9 ± 4.45 gC/m2/month. Our results underscore the importance of representing the impact of soil drainage conditions on the thawing of permafrost soils, particularly poorly drained soils, which will drive the magnitude of carbon released at sites across the high-latitude tundra. These findings can help improve predictions of net carbon releases from thawing permafrost, ultimately contributing to a better understanding of the impact of Arctic warming on the global climate system. 
    more » « less
  5. Abstract The permafrost active layer is a key supplier of soil organic carbon and mineral nutrients to Arctic rivers. In the active layer, sites of soil-water exchange are locations for organic carbon and nutrient mobilization. Previously these sites were considered as connected during summer months and isolated during winter months. Whether soil pore waters in active layer soils are connected during shoulder seasons is poorly understood. In this study, exceptionally heavy silicon isotope compositions in soil pore waters show that during late winter, there is no connection between isolated pockets of soil pore water in soils with a shallow active layer. However, lighter silicon isotope compositions in soil pore waters reveal that soils are biogeochemically connected for longer than previously considered in soils with a deeper active layer. We show that an additional 21% of the 0–1 m soil organic carbon stock is exposed to soil - water exchange. This marks a hot moment during a dormant season, and an engine for organic carbon transport from active layer soils. Our findings mark the starting point to locate earlier pathways for biogeochemical connectivity, which need to be urgently monitored to quantify the seasonal flux of organic carbon released from permafrost soils. 
    more » « less
  6. Abstract Arctic and alpine tundra ecosystems are large reservoirs of organic carbon1,2. Climate warming may stimulate ecosystem respiration and release carbon into the atmosphere3,4. The magnitude and persistency of this stimulation and the environmental mechanisms that drive its variation remain uncertain5–7. This hampers the accuracy of global land carbon–climate feedback projections7,8. Here we synthesize 136 datasets from 56 open-top chamber in situ warming experiments located at 28 arctic and alpine tundra sites which have been running for less than 1 year up to 25 years. We show that a mean rise of 1.4 °C [confidence interval (CI) 0.9–2.0 °C] in air and 0.4 °C [CI 0.2–0.7 °C] in soil temperature results in an increase in growing season ecosystem respiration by 30% [CI 22–38%] (n = 136). Our findings indicate that the stimulation of ecosystem respiration was due to increases in both plant-related and microbial respiration (n = 9) and continued for at least 25 years (n = 136). The magnitude of the warming effects on respiration was driven by variation in warming-induced changes in local soil conditions, that is, changes in total nitrogen concentration and pH and by context-dependent spatial variation in these conditions, in particular total nitrogen concentration and the carbon:nitrogen ratio. Tundra sites with stronger nitrogen limitations and sites in which warming had stimulated plant and microbial nutrient turnover seemed particularly sensitive in their respiration response to warming. The results highlight the importance of local soil conditions and warming-induced changes therein for future climatic impacts on respiration. 
    more » « less
  7. Abstract The quantity and preservation of carbon‐rich organic matter (OM) underlying permafrost uplands, and the evolution of carbon accumulation with millennial climate change, are large sources of uncertainty in carbon cycle feedbacks on climate change. We investigated permafrost OM accumulation and degradation over the Holocene using a transect of sediment cores dating back to at least c. 6 ka, from a hillslope in the Eight Mile Lake watershed, central Alaska. We find decimeter‐scale organic‐rich (111 ± 45 kg C m−3) and organic‐poor (49 ± 30 kg C m−3) layers below an upper peat, which store 35% ± 11% and 41% ± 20% of the carbon in the upper 1 m, respectively. In organic‐poor layers, scattered14C ages of plant macrofossils and higher percentages of degradedAlnusandBetulapollen indicate reworking by cryoturbation and hillslope processes. Whereas organic carbon to nitrogen ratios generally indicate OM freshening up‐core, amino acid bacterial biomarkers, includingd‐enantiomers and gamma‐aminobutyric acid, suggest enhanced degradation prior to 5 ka. Carbon accumulation rates increased from ∼4 to 14 g C m−2 year−1from c. 8 to 0.2 ka, coinciding with decreasing temperatures and increasing moisture regionally, which may have promoted OM accumulation. Carbon stocks within the upper 1 m average 66 ± 13 kg C m−2, varying from 77 kg C m−2in a buried depression on the upper slope to 48 kg C m−2downslope. We conclude that heterogeneity in preserved OM reflects a combination of hillslope geomorphic processes, cryoturbation, and climatic variations over the Holocene. 
    more » « less
  8. Abstract Significant progress in permafrost carbon science made over the past decades include the identification of vast permafrost carbon stocks, the development of new pan‐Arctic permafrost maps, an increase in terrestrial measurement sites for CO2and methane fluxes, and important factors affecting carbon cycling, including vegetation changes, periods of soil freezing and thawing, wildfire, and other disturbance events. Process‐based modeling studies now include key elements of permafrost carbon cycling and advances in statistical modeling and inverse modeling enhance understanding of permafrost region C budgets. By combining existing data syntheses and model outputs, the permafrost region is likely a wetland methane source and small terrestrial ecosystem CO2sink with lower net CO2uptake toward higher latitudes, excluding wildfire emissions. For 2002–2014, the strongest CO2sink was located in western Canada (median: −52 g C m−2 y−1) and smallest sinks in Alaska, Canadian tundra, and Siberian tundra (medians: −5 to −9 g C m−2 y−1). Eurasian regions had the largest median wetland methane fluxes (16–18 g CH4m−2 y−1). Quantifying the regional scale carbon balance remains challenging because of high spatial and temporal variability and relatively low density of observations. More accurate permafrost region carbon fluxes require: (a) the development of better maps characterizing wetlands and dynamics of vegetation and disturbances, including abrupt permafrost thaw; (b) the establishment of new year‐round CO2and methane flux sites in underrepresented areas; and (c) improved models that better represent important permafrost carbon cycle dynamics, including non‐growing season emissions and disturbance effects. 
    more » « less
  9. Under current nationally determined contributions (NDCs) to mitigate greenhouse gas emissions, global warming is projected to reach 2.7°C above preindustrial levels. In this review, we show that at such a level of warming, the Arctic would be transformed beyond contemporary recognition: Virtually every day of the year would have air temperatures higher than preindustrial extremes, the Arctic Ocean would be essentially ice free for several months in summer, the area of Greenland that reaches melting temperatures for at least a month would roughly quadruple, and the area of permafrost would be roughly half of what it was in preindustrial times. These geophysical changes go along with widespread ecosystem disruptions and infrastructure damage, which, as we show here, could be substantially reduced by increased efforts to limit global warming. 
    more » « less
    Free, publicly-accessible full text available February 7, 2026
  10. Abstract. Our understanding of how rapid Arctic warming and permafrost thaw affect global climate dynamics is restricted by limited spatio-temporal data coverage due to logistical challenges and the complex landscape of Arctic regions. It is therefore crucial to make best use of the available observations, including the integrated data analysis across disciplines and observational platforms. To alleviate the data compilation process for syntheses, cross-scale analyses, earth system models, and remote sensing applications, we introduce ARGO, a new meta-dataset comprised of greenhouse gas observations from various observational platforms across the Arctic and boreal biomes within the polar region of the northern hemisphere. ARGO provides a centralised repository for metadata on carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) measurements linked with an interactive online tool (https://www.bgc-jena.mpg.de/argo/). This tool offers prompt metadata visualisation for the research community. Here, we present the structure and features of ARGO, underscoring its role as a valuable resource for advancing Arctic climate research and guiding synthesis efforts in the face of rapid environmental change in northern regions. The ARGO meta-dataset is openly available for download at Zenodo (https://doi.org/10.5281/zenodo.13870390) (Vogt et al., 2024). 
    more » « less
    Free, publicly-accessible full text available November 13, 2025