skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2318101

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2026
  2. Free, publicly-accessible full text available July 7, 2026
  3. The popularization of Text-to-Image (T2I) diffusion models enables the genera- tion of high-quality images from text descriptions. However, generating diverse customized images with reference visual attributes remains challenging. This work focuses on personalizing T2I diffusion models at a more abstract concept or category level, adapting commonalities from a set of reference images while creating new instances with sufficient variations. We introduce a solution that al- lows a pretrained T2I diffusion model to learn a set of soft prompts, enabling the generation of novel images by sampling prompts from the learned distribution. These prompts offer text-guided editing capabilities and additional flexibility in controlling variation and mixing between multiple distributions. We also show the adaptability of the learned prompt distribution to other tasks, such as text- to-3D. Finally we demonstrate effectiveness of our approach through quantitative analysis including automatic evaluation and human assessment. 
    more » « less
    Free, publicly-accessible full text available April 24, 2026
  4. Free, publicly-accessible full text available January 1, 2026
  5. Free, publicly-accessible full text available January 1, 2026
  6. Free, publicly-accessible full text available December 10, 2025
  7. Free, publicly-accessible full text available December 3, 2025
  8. Recent research has made significant progress in text-to-image editing, yet numerous areas remain under explored. In this work, we propose a novel application in the culinary arts, leveraging diffusion models to adjust a range of dishes into a variety of cuisines. Our approach infuses each dish with unique twists representative of diverse culinary traditions and ingredient profiles. We introduce the Cuisine Transfer task and a comprehensive framework for its execution, along with a curated dataset comprising over 1600 unique food samples at the ingredient level. Additionally, we propose three Cuisine Transfer task specific metrics to accurately evaluate our method and address common failure scenarios in existing image editing techniques. Our evaluations demonstrate that our method significantly outperforms baseline models on the Cuisine Transfer task 
    more » « less
  9. The popularization of Text-to-Image (T2I) diffusion mod- els enables the generation of high-quality images from text descriptions. However, generating diverse customized im- ages with reference visual attributes remains challenging. This work focuses on personalizing T2I diffusion models at a more abstract concept or category level, adapting com- monalities from a set of reference images while creating new instances with sufficient variations. We introduce a solution that allows a pretrained T2I diffusion model to learn a set of soft prompts, enabling the generation of novel images by sampling prompts from the learned distri- bution. These prompts offer text-guided editing capabilities and additional flexibility in controlling variation and mix- ing between multiple distributions. We also show the adapt- ability of the learned prompt distribution to other tasks, such as text-to-3D. Finally we demonstrate effectiveness of our approach through quantitative analysis including auto- matic evaluation and human assessment. 
    more » « less