skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2325527

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Examining the cues and drivers influencing seed production is crucial to better understand forest resilience to climate change. We explored the effects of five climatic variables on seed production over 22 years in an everwet Amazonian forest, by separating direct effects of these variables from indirect effects mediated through flower production. We observed a decline in seed production over the study period, which was primarily explained by direct effects of rising nighttime temperatures and declining average vapour pressure deficits. Higher daytime temperatures were positively related to seed output, mainly through a flower‐mediated effect, while rainfall effects on seed production were more nuanced, showing either positive or negative relationships depending on the seasonal timing of rains. If these trends continue, they are likely to lead to significant changes in forest dynamics, potentially impacting both forest structure and species composition. 
    more » « less
  2. Abstract Forests sequester a substantial portion of anthropogenic carbon emissions. Many open questions concern how. We address two of these questions. Has leaf and fine litter production changed? And what is the contribution of old‐growth forests? We address these questions with long‐term records (≥10 years) of total, reproductive, and especially foliar fine litter production from 32 old‐growth forests. We expect increases in forest productivity associated with rising atmospheric carbon dioxide concentrations and, in cold climates, with rising temperatures. We evaluate the statistical power of our analysis using simulations of known temporal trends parameterized with sample sizes (in number of years) and levels of interannual variation observed for each record. Statistical power is inadequate to detect biologically plausible trends for records lasting less than 20 years. Modest interannual variation characterizes fine litter production, and more variable phenomena will require even longer records to evaluate global change responses with sufficient statistical power. Just four old‐growth forests have records of fine litter production lasting longer than 20 years, and these four provide no evidence for increases. Three of the four forests are in central Panama, also have long‐term records of wood production, and both components of aboveground production are unchanged over 21–38 years. The possibility that recent increases in forest productivity are limited for old‐growth forests deserves more attention. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  3. Abstract All species must partition resources among the processes that underly growth, survival, and reproduction. The resulting demographic trade‐offs constrain the range of viable life‐history strategies and are hypothesized to promote local coexistence. Tropical forests pose ideal systems to study demographic trade‐offs as they have a high diversity of coexisting tree species whose life‐history strategies tend to align along two orthogonal axes of variation: a growth–survival trade‐off that separates species with fast growth from species with high survival and a stature–recruitment trade‐off that separates species that achieve large stature from species with high recruitment. As these trade‐offs have typically been explored for trees ≥1 cm dbh, it is unclear how species' growth and survival during earliest seedling stages are related to the trade‐offs for trees ≥1 cm dbh. Here, we used principal components and correlation analyses to (1) determine the main demographic trade‐offs among seed‐to‐seedling transition rates and growth and survival rates from the seedling to overstory size classes of 1188 tree species from large‐scale forest dynamics plots in Panama, Puerto Rico, Ecuador, Taiwan, and Malaysia and (2) quantify the predictive power of maximum dbh, wood density, seed mass, and specific leaf area for species' position along these demographic trade‐off gradients. In four out of five forests, the growth–survival trade‐off was the most important demographic trade‐off and encompassed growth and survival of both seedlings and trees ≥1 cm dbh. The second most important trade‐off separated species with relatively fast growth and high survival at the seedling stage from species with relatively fast growth and high survival ≥1 cm dbh. The relationship between seed‐to‐seedling transition rates and these two trade‐off aces differed between sites. All four traits were significant predictors for species' position along the two trade‐off gradients, albeit with varying importance. We concluded that, after accounting for the species' position along the growth–survival trade‐off, tree species tend to trade off growth and survival at the seedling with later life stages. This ontogenetic trade‐off offers a mechanistic explanation for the stature–recruitment trade‐off that constitutes an additional ontogenetic dimension of life‐history variation in species‐rich ecosystems. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  4. ABSTRACT The fundamental trade‐off between current and future reproduction has long been considered to result in a tendency for species that can grow large to begin reproduction at a larger size. Due to the prolonged time required to reach maturity, estimates of tree maturation size remain very rare and we lack a global view on the generality and the shape of this trade‐off. Using seed production from five continents, we estimate tree maturation sizes for 486 tree species spanning tropical to boreal climates. Results show that a species' maturation size increases with maximum size, but in a non‐proportional way: the largest species begin reproduction at smaller sizes than would be expected if maturation were simply proportional to maximum size. Furthermore, the decrease in relative maturation size is steepest in cold climates. These findings on maturation size drivers are key to accurately represent forests' responses to disturbance and climate change. 
    more » « less
  5. Free, publicly-accessible full text available August 1, 2026
  6. Muller-Landau, Helene C; Wright, S Joseph (Ed.)
    I present the largest survey of seed germination yet for Barro Colorado Island (BCI) and central Panama, based on 1,226 seed collections from 732 species, in 103 families, including trees, shrubs, lianas, vines, herbs, and epiphytes. Most collections were germinated in both sun and shade habitats in growing houses on BCI, simulating tree fall gap and shaded understory conditions. Many ad hoc treatments were also utilized. Data were collected during the field portion (1985–1989) of the BCI Seedling Flora Project. This publication marks the public release of the entire dataset, parts of which have previously been shared with BCI colleagues. I hope that this dataset will provide background information for those needing to produce seedlings from seed for experimental studies and that it will encourage others to incorporate seed germination as an additional plant trait into community analyses. 
    more » « less
    Free, publicly-accessible full text available November 22, 2025
  7. The Barro Colorado Nature Monument in Panama, which includes Barro Colorado Island and nearby mainland peninsulas, supports the best studied tropical forest in the world. This 98-chapter edited volume reviews the history and contributions of research undertaken at this moist tropical forest to advance our understanding of tropical plants and ecosystems. The first section describes the setting, including soils, land use history, forest structure, and plant species composition. Nine additional sections concern plant reproduction and seedling regeneration, plant physiology, plant community ecology, population genetics, interactions with microbes and herbivores, remote sensing, observational ecosystem studies, experimental ecosystem studies, and focal taxa and functional group accounts. The authoritative reviews in this volume provide a foundation for future research in this and other tropical forest sites. 
    more » « less
    Free, publicly-accessible full text available November 22, 2025
  8. We provide data on mean dry and wet mass of > 800 species from Yasuní National Forest, Ecuador collected between 2000 and 2014. Species include trees, shrubs, lianas and herbs. We also provide data on number of seeds per fruit for >1100 species compiled in 2016, along with information on fruit type and dispersal mode. Both of these data sets supplement previously published data on flowering and fruiting phenology from this equatorial, ever-wet rainforest in eastern Ecuador (Garwood et al. 2023). Garwood, N.C., S.J. Wright, R. Valencia, and M.R. Metz. 2023. Rainforest phenology: flower, fruit and seed production from biweekly collections of 200 traps in the Yasuní Forest Dynamics Plot, Ecuador, 2000-2018 ver 1. Environmental Data Initiative. https://doi.org/10.6073/pasta/5e6cb3d7ff741fd9d21965c4a904bc1f (Accessed 2024-03-27). 
    more » « less
  9. Forests sequester a substantial portion of anthropogenic carbon emissions. Many open questions concern how. We address two of these questions. Has leaf and fine litter production changed? And what is the contribution of old-growth forests? We address these questions with long-term records (≥10 years) of total, reproductive, and especially foliar fine litter production from 32 old-growth forests. We expect increases in forest productivity associated with rising atmospheric carbon dioxide concentrations and, in cold climates, with rising temperatures. We evaluate the statistical power of our analysis using simulations of known temporal trends parameterized with sample sizes (number of years) and levels of interannual variation observed for each record. Statistical power is inadequate to detect biologically plausible trends for records lasting less than 20 years. Modest interannual variation characterizes fine litter production. More variable phenomena will require even longer records to evaluate global change responses with sufficient statistical power.  Just four old-growth forests have records of fine litter production lasting longer than 20 years, and these four provide no evidence for increases. Three of the four forests are in central Panama, also have long-term records of wood production, and both components of aboveground production are unchanged over 21 to 38 years. The possibility that recent increases in forest productivity are limited for old-growth forests deserves more attention. This data package contains previously unpublished data from four old-growth forests in central Panama. Data compiled from the published literature for another 28 forests and the R scripts required to recreate our analyses can be found here: https://smithsonian.dataone.org/view/urn:uuid:8bbcd334-059b-45b1-9b83-94b52abbd6f8. 
    more » « less