skip to main content


Title: Seed Mass of species from Yasuní National Forest, Ecuador, 2000-2014
We provide data on mean dry and wet mass of > 800 species from Yasuní National Forest, Ecuador collected between 2000 and 2014. Species include trees, shrubs, lianas and herbs. We also provide data on number of seeds per fruit for >1100 species compiled in 2016, along with information on fruit type and dispersal mode. Both of these data sets supplement previously published data on flowering and fruiting phenology from this equatorial, ever-wet rainforest in eastern Ecuador (Garwood et al. 2023). Garwood, N.C., S.J. Wright, R. Valencia, and M.R. Metz. 2023. Rainforest phenology: flower, fruit and seed production from biweekly collections of 200 traps in the Yasuní Forest Dynamics Plot, Ecuador, 2000-2018 ver 1. Environmental Data Initiative. https://doi.org/10.6073/pasta/5e6cb3d7ff741fd9d21965c4a904bc1f (Accessed 2024-03-27).  more » « less
Award ID(s):
2325527
PAR ID:
10538061
Author(s) / Creator(s):
; ;
Publisher / Repository:
Environmental Data Initiative
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We provide data on flowering and fruiting phenology from an equatorial, ever-wet rainforest in eastern Ecuador, in Yasuni National Park. This is the first long-term study (18 years) of phenology in a diverse equatorial neotropical forest. Although the site is ever-wet, there is some seasonal variation in rainfall and irradiance. One major question was to determine whether the seasonal variation in climate was sufficient to drive seasonality in reproduction in this hyper-diverse forest. The study began in 2000 with various funding, and became an LTREB-funded project in 2006. We used twice monthly censuses of 200 traps to document phenology. Parts of >1000 species were identified in the traps in the 18 year period (ending early in 2018), including trees, shrubs, lianas and epiphytes. Parts identified included buds, flowers, mature fruits and mature seeds, and aborted, damaged and immature fruits and seeds. The project is on-going, and additional data will be added as it is processed. 
    more » « less
  2. Seedling demography data are provided in annual censuses of 600 seedling plots in an equatorial, ever-wet rainforest in eastern Ecuador, in Yasuní National Park. This long-term study uses standardized methodology from the Smithsonian ForestGEO network of plots, and in particular coordination with similar studies in Luquillo, Puerto Rico, and Barro Colorado Island, Panama. We address hypotheses about the maintenance of forest diversity and long-term variation, and link our data to companion studies of flowering and fruiting phenology and sapling and adult dynamics in the Yasuní Forest Dynamics 50-ha Plot. The project is ongoing, and additional data will be added as they are processed. 
    more » « less
  3. Abstract

    Flowering and fruiting phenology have been infrequently studied in the ever‐wet hyperdiverse lowland forests of northwestern equatorial Amazonía. These Neotropical forests are typically called aseasonal with reference to climate because they are ever‐wet, and it is often assumed they are also aseasonal with respect to phenology. The physiological limits to plant reproduction imposed by water and light availability are difficult to disentangle in seasonal forests because these variables are often temporally correlated, and both are rarely studied together, challenging our understanding of their relative importance as drivers of reproduction. Here we report on the first long‐term study (18 years) of flowering and fruiting phenology in a diverse equatorial forest, Yasuní in eastern Ecuador, and the first to include a full suite of on‐site monthly climate data. Using twice monthly censuses of 200 traps and >1000 species, we determined whether reproduction at Yasuní is seasonal at the community and species levels and analyzed the relationships between environmental variables and phenology. We also tested the hypothesis that seasonality in phenology, if present, is driven primarily by irradiance. Both the community‐ and species‐level measures demonstrated strong reproductive seasonality at Yasuní. Flowering peaked in September–November and fruiting peaked in March–April, with a strong annual signal for both phenophases. Irradiance and rainfall were also highly seasonal, even though no month on average experienced drought (a month with <100 mm rainfall). Flowering was positively correlated with current or near‐current irradiance, supporting our hypothesis that the extra energy available during the period of peak irradiance drives the seasonality of flowering at Yasuní. As Yasuní is representative of lowland ever‐wet equatorial forests of northwestern Amazonía, we expect that reproductive phenology will be strongly seasonal throughout this region.

     
    more » « less
  4. Abstract

    Fruit production in tropical forests varies considerably in space and time, with important implications for frugivorous consumers. Characterizing temporal variation in forest productivity is thus critical for understanding adaptations of tropical forest frugivores, yet long‐term phenology data from the tropics, in particular from African forests, are still scarce. Similarly, as the abiotic factors driving phenology in the tropics are predicted to change with a warming climate, studies documenting the relationship between climatic variables and fruit production are increasingly important. Here, we present data from 19 years of monitoring the phenology of 20 tree species at Ngogo in Kibale National Park, Uganda. Our aims were to characterize short‐ and long‐term trends in productivity and to understand the abiotic factors driving temporal variability in fruit production. Short‐term (month‐to‐month) variability in fruiting was relatively low at Ngogo, and overall fruit production increased significantly through the first half of the study. Among the abiotic variables, we expected to influence phenology patterns (including rainfall, solar irradiance, and average temperature), only average temperature was a significant predictor of monthly fruit production. We discuss these findings as they relate to the resource base of the frugivorous vertebrate community inhabiting Ngogo.

     
    more » « less
  5. Abstract

    Ecological niche models (ENMs) are often used to predict species distribution patterns from datasets that describe abiotic and biotic factors at coarse spatial scales. Ground‐truthing ENMs provide important information about how these factors relate to species‐specific requirements at a scale that is biologically relevant for the species. Chimpanzees are territorial and have a predominantly frugivorous diet. The spatial and temporal variation in fruit availability for different chimpanzee populations is thus crucial, but rarely depicted in ENMs. The genetic and geographic distinction within Nigeria–Cameroon chimpanzee (Pan troglodytes ellioti) populations represents a unique opportunity to understand fine scale species‐relevant ecological variation in relation to ENMs. In Cameroon,P. t. elliotiis composed of two genetically distinct populations that occupy different niches: rainforests in western Cameroon and forest–woodland–savanna mosaic (ecotone) in central Cameroon. We investigated habitat variation at three representative sites using chimpanzee‐relevant environmental variables, including fruit availability, to assess how these variables distinguish these niches from one another. Contrary to the assumption of most ENM studies that intact forest is essential for the survival of chimpanzees, we hypothesized that the ecotone and human‐modified habitats in Cameroon have sufficient resources to sustain large chimpanzee populations. Rainfall, and the diversity, density, and size of trees were higher at the rainforest. The ecotone had a higher density of terrestrial herbs and lianas. Fruit availability was higher at Ganga (ecotone) than at Bekob and Njuma. Seasonal variation in fruit availability was highest at Ganga, and periods of fruit scarcity were longer than at the rainforest sites. Introduced and secondary forest species linked with anthropogenic modification were common at Bekob, which reduced seasonality in fruit availability. Our findings highlight the value of incorporating fine scale species‐relevant ecological data to create more realistic models, which have implications for local conservation planning efforts.

     
    more » « less