Abstract Forests sequester a substantial portion of anthropogenic carbon emissions. Many open questions concern how. We address two of these questions. Has leaf and fine litter production changed? And what is the contribution of old‐growth forests? We address these questions with long‐term records (≥10 years) of total, reproductive, and especially foliar fine litter production from 32 old‐growth forests. We expect increases in forest productivity associated with rising atmospheric carbon dioxide concentrations and, in cold climates, with rising temperatures. We evaluate the statistical power of our analysis using simulations of known temporal trends parameterized with sample sizes (in number of years) and levels of interannual variation observed for each record. Statistical power is inadequate to detect biologically plausible trends for records lasting less than 20 years. Modest interannual variation characterizes fine litter production, and more variable phenomena will require even longer records to evaluate global change responses with sufficient statistical power. Just four old‐growth forests have records of fine litter production lasting longer than 20 years, and these four provide no evidence for increases. Three of the four forests are in central Panama, also have long‐term records of wood production, and both components of aboveground production are unchanged over 21–38 years. The possibility that recent increases in forest productivity are limited for old‐growth forests deserves more attention. 
                        more » 
                        « less   
                    
                            
                            Total, foliar, and reproductive fine litter production for up to 38 years for four old-growth forests in central Panama
                        
                    
    
            Forests sequester a substantial portion of anthropogenic carbon emissions. Many open questions concern how. We address two of these questions. Has leaf and fine litter production changed? And what is the contribution of old-growth forests? We address these questions with long-term records (≥10 years) of total, reproductive, and especially foliar fine litter production from 32 old-growth forests. We expect increases in forest productivity associated with rising atmospheric carbon dioxide concentrations and, in cold climates, with rising temperatures. We evaluate the statistical power of our analysis using simulations of known temporal trends parameterized with sample sizes (number of years) and levels of interannual variation observed for each record. Statistical power is inadequate to detect biologically plausible trends for records lasting less than 20 years. Modest interannual variation characterizes fine litter production. More variable phenomena will require even longer records to evaluate global change responses with sufficient statistical power.  Just four old-growth forests have records of fine litter production lasting longer than 20 years, and these four provide no evidence for increases. Three of the four forests are in central Panama, also have long-term records of wood production, and both components of aboveground production are unchanged over 21 to 38 years. The possibility that recent increases in forest productivity are limited for old-growth forests deserves more attention. This data package contains previously unpublished data from four old-growth forests in central Panama. Data compiled from the published literature for another 28 forests and the R scripts required to recreate our analyses can be found here: https://smithsonian.dataone.org/view/urn:uuid:8bbcd334-059b-45b1-9b83-94b52abbd6f8. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10623844
- Publisher / Repository:
- Dryad
- Date Published:
- Subject(s) / Keyword(s):
- FOS: Biological sciences FOS: Biological sciences fine litter production leaf production old-growth forest Barro Colorado Island litter traps humid tropical forest Plant reproduction Bosque Protector San Lorenzo global change responses
- Format(s):
- Medium: X Size: 195718 bytes
- Size(s):
- 195718 bytes
- Right(s):
- Creative Commons Zero v1.0 Universal
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Forests sequester a substantial portion of anthropogenic carbon emissions. Many open questions concern how. We address two of these questions (Wright and Calderón 2025). Has leaf and fine litter production changed? And what is the contribution of old-growth forests? We address these questions with long-term records (≥10 years) of total, reproductive, and especially foliar fine litter production from 32 old-growth forests. We expect increases in forest productivity associated with rising atmospheric carbon dioxide concentrations and, in cold climates, with rising temperatures. We evaluate the statistical power of our analysis using simulations of known temporal trends parameterized with sample sizes (number of years) and levels of interannual variation observed for each record. Statistical power is inadequate to detect biologically plausible trends for records lasting less than 20 years. Just four old-growth forests have records of fine litter production lasting longer than 20 years, and these four provide no evidence for increases. Three of the four forests are in central Panama, also have long-term records of wood production, and both components of aboveground production are unchanged over 21 to 38 years. The possibility that recent increases in forest productivity are limited for old-growth forests deserves more attention. Modest interannual variation characterizes fine litter production, and more variable phenomena will require even longer records to evaluate global change responses with sufficient statistical power. The data files and R scripts in this data package recreate the analyses of Wright and Calderón (2025). References Wright, S. J. and O. Calderón. 2025. Statistical power and the detection of global change responses: The case of leaf production in old-growth forests. Ecology (accepted 28 October 2024; manuscript ECY23-1254.R1)more » « less
- 
            Numerous ring-width chronologies from different species have recently been developed in diverse tropical forests across South America. However, the temporal and spatial climate signals in these tropical chronologies is less well known. In this work, annual growth rings of Amburana cearensis, a widely distributed tropical tree species, were employed to estimate temporal and spatial patterns of climate variability in the transition from the dry Chiquitano (16–17◦S) to the humid Guarayos-southern Amazon (14–15◦S) forests. Four well-replicated chronologies (16–21 trees, 22–28 radii) of A. cearensis were compared with temperature and precipitation records available in the region. The interannual variations in all four A. cearensis tree-ring chronologies are positively correlated with precipitation and negatively with temperature during the late dry-early wet season, the classic moisture response seen widely in trees from dry tropical and temperate forests worldwide. However, the chronologies from the dry Chiquitano forests of southern Bolivia reflect the regional reduction in precipitation during recent decades, while the chronologies from the tropical lowland moist forests in the north capture the recent increase in precipitation in the southern Amazon basin. These results indicate that A. cearensis tree growth is not only sensitive to the moisture balance of the growing season, it can also record subtle differences in regional precipitation trends across the dry to humid forest transition. Comparisons with previously developed Centrolobium microchaete chronologies in the region reveal a substantial common signal between chronologies in similar environments, suggesting that regional differences in climate are a major drivers of tree growth along the precipitation gradient. The difficulty of finding A. cearensis trees over 150-years old is the main limitation involved in the paleoclimate application of this species. The expansion of monocultures and intensive cattle ranching in the South American tropics are contributing to the loss of these old growth A. cearensis trees and the valuable records of climate variability and climate change that they contain.more » « less
- 
            Abstract Fine roots constitute a significant component of the net primary productivity (NPP) of forest ecosystems but are much less studied than aboveground NPP. Comparisons across sites and regions are also hampered by inconsistent methodologies, especially in tropical areas. Here, we present a novel dataset of fine root biomass, productivity, residence time, and allocation in tropical old‐growth rainforest sites worldwide, measured using consistent methods, and examine how these variables are related to consistently determined soil and climatic characteristics. Our pantropical dataset spans intensive monitoring plots in lowland (wet, semi‐deciduous, and deciduous) and montane tropical forests in South America, Africa, and Southeast Asia (n = 47). Large spatial variation in fine root dynamics was observed across montane and lowland forest types. In lowland forests, we found a strong positive linear relationship between fine root productivity and sand content, this relationship was even stronger when we considered the fractional allocation of total NPP to fine roots, demonstrating that understanding allocation adds explanatory power to understanding fine root productivity and total NPP. Fine root residence time was a function of multiple factors: soil sand content, soil pH, and maximum water deficit, with longest residence times in acidic, sandy, and water‐stressed soils. In tropical montane forests, on the other hand, a different set of relationships prevailed, highlighting the very different nature of montane and lowland forest biomes. Root productivity was a strong positive linear function of mean annual temperature, root residence time was a strong positive function of soil nitrogen content in montane forests, and lastly decreasing soil P content increased allocation of productivity to fine roots. In contrast to the lowlands, environmental conditions were a better predictor for fine root productivity than for fractional allocation of total NPP to fine roots, suggesting that root productivity is a particularly strong driver of NPP allocation in tropical mountain regions.more » « less
- 
            null (Ed.)Old-growth tropical forests harbor an immense diversity of tree species but are rapidly being cleared, while secondary forests that regrow on abandoned agricultural lands increase in extent. We assess how tree species richness and composition recover during secondary succession across gradients in environmental conditions and anthropogenic disturbance in an unprecedented multisite analysis for the Neotropics. Secondary forests recover remarkably fast in species richness but slowly in species composition. Secondary forests take a median time of five decades to recover the species richness of old-growth forest (80% recovery after 20 years) based on rarefaction analysis. Full recovery of species composition takes centuries (only 34% recovery after 20 years). A dual strategy that maintains both old-growth forests and species-rich secondary forests is therefore crucial for biodiversity conservation in human-modified tropical landscapes.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
