Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 1, 2025
-
Free, publicly-accessible full text available April 21, 2025
-
Free, publicly-accessible full text available April 14, 2025
-
Benjamin, Paaßen ; Carrie, Demmans Epp (Ed.)One of the areas where Large Language Models (LLMs) show promise is for automated qualitative coding, typically framed as a text classification task in natural language processing (NLP). Their demonstrated ability to leverage in-context learning to operate well even in data-scarce settings poses the question of whether collecting and annotating large-scale data for training qualitative coding models is still beneficial. In this paper, we empirically investigate the performance of LLMs designed for use in prompting-based in-context learning settings, and draw a comparison to models that have been trained using the traditional pretraining--finetuning paradigm with task-specific annotated data, specifically for tasks involving qualitative coding of classroom dialog. Compared to other domains where NLP studies are typically situated, classroom dialog is much more natural and therefore messier. Moreover, tasks in this domain are nuanced and theoretically grounded and require a deep understanding of the conversational context. We provide a comprehensive evaluation across five datasets, including tasks such as talkmove prediction and collaborative problem solving skill identification. Our findings show that task-specific finetuning strongly outperforms in-context learning, showing the continuing need for high-quality annotated training datasets.more » « lessFree, publicly-accessible full text available January 1, 2025