Abstract Urban areas are foci for the introduction of non‐native plant species, and they often act as launching sites for invasions into the wider environment. Although interest in biological invasions in urban areas is growing rapidly, and the extent and complexity of problems associated with invasions in these systems have increased, data on the composition and numbers of non‐native plants in urbanized areas remain scattered and idiosyncratic.We assembled data from multiple sources to create the Global Urban Biological Invasions Compendium (GUBIC) for vascular plants representing 553 urban centres from 61 countries across every continent except Antarctica.The GUBIC repository includes 8140 non‐native plant species from 253 families. The number of urban centres in which these non‐native species occurred had a log‐normal distribution, with 65.2% of non‐native species occurring in fewer than 10 urban centres.Practical implications: The dataset has wider applications for urban ecology, invasion biology, macroecology, conservation, urban planning and sustainability. We hope this dataset will stimulate future research in invasion ecology related to the diversity and distributional patterns of non‐native flora across urban centres worldwide. Further, this information should aid the early detection and risk assessment of potential invasive species, inform policy development and assist in setting management priorities.
more »
« less
High risk of biological invasion from prayer animal release in China
Prayer animal release (PAR)—a traditional “compassion‐based” religious practice of releasing captive animals into the wild to improve the karma of the releaser—has been regarded as a major anthropogenic pathway facilitating species invasions worldwide. However, comprehensive, quantitative assessments of PAR‐related invasion risks, crucial for the development of mitigation strategies, are lacking. To address this knowledge gap, we conducted a literature review of the prevalence of PAR events and examined the overlap between PAR intensity across China and habitat suitability for non‐native vertebrates released in these events. Our results revealed that 63% of the areas with high PAR intensity in China were also suitable for non‐native vertebrate establishment, a degree of overlap that was greater than expected by chance. In addition, field surveys in China detected higher richness of non‐native fishes at PAR sites than at non‐PAR sites. These findings imply an overall high risk of biological invasions associated with PARs. We recommend interdisciplinary cooperation among scientists, religious groups, and government agencies to effectively manage PARs and reduce the associated bioinvasion risk.
more »
« less
- PAR ID:
- 10509699
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Frontiers in Ecology and the Environment
- Volume:
- 22
- Issue:
- 2
- ISSN:
- 1540-9295
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This study focuses on the application of phased array radars (PARs) to observe tornadoes and their formation. PAR technology for meteorological applications is maturing and may become a valuable tool for the meteorological community. A fully digital PAR offers a range of benefits including adaptive scanning techniques, higher temporal resolution especially via radar imaging modes, and denser vertical sampling to allow for more complete observations of severe hazard structure and evolution. To best understand the benefits of such a system, synthetic PAR observations are generated from archived mobile rapid-scan observations collected by the Rapid X-band Polarimetric radar (RaXPol) to emulate typical operational radar ranges and PAR-enabled scanning strategy effects. In this study, a synthetic PAR data tool is applied to two tornadic cases (24 May 2011 El Reno, Oklahoma, tornado and the 24 May 2016 Dodge City, Kansas, tornadoes) and one non-tornadic case (17 April 2013). Results indicate that, despite increasing standoff ranges and using vertical imaging, a PAR can still observe a similar mode of tornadogenesis (i.e., non-descending TVS) as traditional mobile systems but with a slight delay in observing intensification at increasing standoff ranges and reduced change in measured intensity. The PAR-enabled vertical imaging mode does not eliminate our ability to identify the TVS at different spoiling factors, but changes to the structure of the TVS may have operational implications. We hope that the improved understanding of meteorological benefits from these synthetic PAR data can provide useful insight for fully digital PAR radar placement and warning operations.more » « less
-
Abstract Invasive species science has focused heavily on the invasive agent. However, management to protect native species also requires a proactive approach focused on resident communities and the features affecting their vulnerability to invasion impacts. Vulnerability is likely the result of factors acting across spatial scales, from local to regional, and it is the combined effects of these factors that will determine the magnitude of vulnerability. Here, we introduce an analytical framework that quantifies the scale‐dependent impact of biological invasions on native richness from the shape of the native species–area relationship (SAR). We leveraged newly available, biogeographically extensive vegetation data from the U.S. National Ecological Observatory Network to assess plant community vulnerability to invasion impact as a function of factors acting across scales. We analyzed more than 1000 SARs widely distributed across the USA along environmental gradients and under different levels of non‐native plant cover. Decreases in native richness were consistently associated with non‐native species cover, but native richness was compromised only at relatively high levels of non‐native cover. After accounting for variation in baseline ecosystem diversity, net primary productivity, and human modification, ecoregions that were colder and wetter were most vulnerable to losses of native plant species at the local level, while warmer and wetter areas were most susceptible at the landscape level. We also document how the combined effects of cross‐scale factors result in a heterogeneous spatial pattern of vulnerability. This pattern could not be predicted by analyses at any single scale, underscoring the importance of accounting for factors acting across scales. Simultaneously assessing differences in vulnerability between distinct plant communities at local, landscape, and regional scales provided outputs that can be used to inform policy and management aimed at reducing vulnerability to the impact of plant invasions.more » « less
-
Abstract Successful control and prevention of biological invasions depend on identifying traits of non‐native species that promote fitness advantages in competition with native species. Here, we show that, among 76 native and non‐native woody plants of deciduous forests of North America, invaders express a unique functional syndrome that combines high metabolic rate with robust leaves of longer lifespan and a greater duration of annual carbon gain, behaviours enabled by seasonally plastic xylem structure and rapid production of thin roots. This trait combination was absent in all native species examined and suggests the success of forest invaders is driven by a novel resource‐use strategy. Furthermore, two traits alone—annual leaf duration and nuclear DNA content—separated native and invasive species with 93% accuracy, supporting the use of functional traits in invader risk assessments. A trait syndrome reflecting both fast growth capacity and understorey persistence may be a key driver of forest invasions.more » « less
-
Abstract The scientific community has expressed interest in the potential of phased array radars (PARs) to observe the atmosphere with finer spatial and temporal scales. Although convergence has occurred between the meteorological and engineering communities, the need exists to increase access of PAR to meteorologists. Here, we facilitate these interdisciplinary efforts in the field of ground-based PARs for atmospheric studies. We cover high-level technical concepts and terminology for PARs as applied to studies of the atmosphere. A historical perspective is provided as context along with an overview of PAR system architectures, technical challenges, and opportunities. Envisioned scan strategies are summarized because they are distinct from traditional mechanically scanned radars and are the most advantageous for high-resolution studies of the atmosphere. Open access to PAR data is emphasized as a mechanism to educate the future generation of atmospheric scientists. Finally, a vision for the future of operational networks, research facilities, and expansion into complementary radar wavelengths is provided.more » « less
An official website of the United States government

