Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abernethy, Jacob ; Agarwal, Shivani (Ed.)We develop a technique for establishing lower bounds on the sample complexity of Least Squares (or, Empirical Risk Minimization) for large classes of functions. As an application, we settle an open problem regarding optimality of Least Squares in estimating a convex set from noisy support function measurements in dimension d \geq 6. Specifically, we establish that Least Squares is mimi- max sub-optimal, and achieves a rate of n^{-2/(d-1)} whereas the minimax rate is n^{-4/(d+3)}.more » « less
-
Abernethy, Jacob ; Agarwal, Shivani (Ed.)We study a variant of the sparse PCA (principal component analysis) problem in the “hard” regime, where the inference task is possible yet no polynomial-time algorithm is known to exist. Prior work, based on the low-degree likelihood ratio, has conjectured a precise expression for the best possible (sub-exponential) runtime throughout the hard regime. Following instead a statistical physics inspired point of view, we show bounds on the depth of free energy wells for various Gibbs measures naturally associated to the problem. These free energy wells imply hitting time lower bounds that corroborate the low-degree conjecture: we show that a class of natural MCMC (Markov chain Monte Carlo) methods (with worst-case initialization) cannot solve sparse PCA with less than the conjectured runtime. These lower bounds apply to a wide range of values for two tuning parameters: temperature and sparsity misparametrization. Finally, we prove that the Overlap Gap Property (OGP), a structural property that implies failure of certain local search algorithms, holds in a significant part of the hard regime.more » « less
-
Abernethy, Jacob ; Agarwal, Shivani (Ed.)We introduce new combinatorial quantities for concept classes, and prove lower and upper bounds for learning complexity in several models of learning in terms of various combinatorial quantities. In the setting of equivalence plus membership queries, we give an algorithm which learns a class in polynomially many queries whenever any such algorithm exists. Our approach is flexible and powerful enough to give new and very short proofs of the efficient learnability of several prominent examples (e.g. regular languages and regular ω-languages), in some cases also producing new bounds on the number of queries.more » « less
-
Abernethy, Jacob ; Agarwal, Shivani (Ed.)We introduce new combinatorial quantities for concept classes, and prove lower and upper bounds for learning complexity in several models of learning in terms of various combinatorial quantities. In the setting of equivalence plus membership queries, we give an algorithm which learns a class in polynomially many queries whenever any such algorithm exists. Our approach is flexible and powerful enough to give new and very short proofs of the efficient learnability of several prominent examples (e.g. regular languages and regular ω-languages), in some cases also producing new bounds on the number of queries.more » « less
-
Abernethy, Jacob ; Agarwal, Shivani (Ed.)We study first order methods to compute the barycenter of a probability distribution $P$ over the space of probability measures with finite second moment. We develop a framework to derive global rates of convergence for both gradient descent and stochastic gradient descent despite the fact that the barycenter functional is not geodesically convex. Our analysis overcomes this technical hurdle by employing a Polyak-Ł{}ojasiewicz (PL) inequality and relies on tools from optimal transport and metric geometry. In turn, we establish a PL inequality when $P$ is supported on the Bures-Wasserstein manifold of Gaussian probability measures. It leads to the first global rates of convergence for first order methods in this context.more » « less
-
Abernethy, Jacob D. ; Agarwal, Shivani (Ed.)