- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
01300000000
- More
- Availability
-
04
- Author / Contributor
- Filter by Author / Creator
-
-
Acharya, Jayadev (1)
-
Chen, Lin (1)
-
Javanmard, Adel (1)
-
Kao, Yu-Chun (1)
-
Li, Gene (1)
-
Liu, Linxi (1)
-
Liu, Yuhan (1)
-
Ma, Li (1)
-
Mirrokni, Vahab (1)
-
Xu, Min (1)
-
Zhang, Cun-Hui (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
Agrawal, Shipra (4)
-
Roth, Aaron (4)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Agrawal, Shipra ; Roth, Aaron (Ed.)Free, publicly-accessible full text available August 8, 2025
-
Liu, Linxi ; Ma, Li ( , Proceedings of Machine Learning Research)Agrawal, Shipra ; Roth, Aaron (Ed.)Free, publicly-accessible full text available July 3, 2025
-
Li, Gene ; Chen, Lin ; Javanmard, Adel ; Mirrokni, Vahab ( , Proceedings of Thirty Seventh Conference on Learning Theory, PMLR, 2024.)Agrawal, Shipra ; Roth, Aaron (Ed.)Free, publicly-accessible full text available July 3, 2025
-
Liu, Yuhan ; Acharya, Jayadev ( , Proceedings of Machine Learning Research)Agrawal, Shipra ; Roth, Aaron (Ed.)We study quantum state certification using unentangled quantum measurements, namely measurements which operate only on one copy of the state at a time. When there is a common source of randomness available and the unentangled measurements are chosen based on this randomness, prior work has shown that copies are necessary and sufficient. We show a separation between algorithms with and without randomness. We develop a lower bound framework for both fixed and randomized measurements that relates the hardness of testing to the well-established Lüders rule. More precisely, we obtain lower bounds for randomized and fixed schemes as a function of the eigenvalues of the Lüders channel which characterizes one possible post-measurement state transformation.more » « lessFree, publicly-accessible full text available June 30, 2025