Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Czumaj, Artur; Xin, Qin (Ed.)
-
Czumaj, Artur; Xin Qin (Ed.)We describe a dynamic data structure for approximate nearest neighbor (ANN) queries with respect to multiplicatively weighted distances with additive offsets. Queries take polylogarithmic time, while the cost of updates is amortized polylogarithmic. The data structure requires near-linear space and construction time. The approach works not only for the Euclidean norm, but for other norms in ℝ^d, for any fixed d. We employ our ANN data structure to construct a faster dynamic structure for approximate SINR queries, ensuring polylogarithmic query and polylogarithmic amortized update for the case of non-uniform power transmitters, thus closing a gap in previous state of the art. To obtain the latter result, we needed a data structure for dynamic approximate halfplane range counting in the plane. Since we could not find such a data structure in the literature, we also show how to dynamize one of the known static data structures.more » « less
-
Czumaj, Artur; Xin, Qin (Ed.)
-
Czumaj, Artur (Ed.)Holant problems are intimately connected with quantum theory as tensor networks. We first use techniques from Holant theory to derive new and improved results for quantum entanglement theory. We discover two particular entangled states |Ψ 6 i of 6 qubits and |Ψ 8 i of 8 qubits respectively, that have extraordinary closure properties in terms of the Bell property. Then we use entanglement properties of constraint functions to derive a new complexity dichotomy for all real-valued Holant problems containing a signature of odd arity. The signatures need not be symmetric, and no auxiliary signatures are assumed.more » « less
-
Czumaj, Artur (Ed.)We study the approximation complexity of the partition function of the eight-vertex model on general 4-regular graphs. For the first time, we relate the approximability of the eight-vertex model to the complexity of approximately counting perfect matchings, a central open problem in this field. Our results extend those in [8]. In a region of the parameter space where no previous approximation complexity was known, we show that approximating the partition function is at least as hard as approximately counting perfect matchings via approximation-preserving reductions. In another region of the parameter space which is larger than the region that is previously known to admit Fully Polynomial Randomized Approximation Scheme (FPRAS), we show that computing the partition function can be reduced to counting perfect matchings (which is valid for both exact and approximate counting). Moreover, we give a complete characterization of nonnegatively weighted (not necessarily planar) 4-ary matchgates, which has been open for several years. The key ingredient of our proof is a geometric lemma. We also identify a region of the parameter space where approximating the partition function on planar 4-regular graphs is feasible but on general 4-regular graphs is equivalent to approximately counting perfect matchings. To our best knowledge, these are the first problems that exhibit this dichotomic behavior between the planar and the nonplanar settings in approximate counting.more » « less
-
Czumaj, Artur; Xin, Qin (Ed.)Representation of Euclidean objects in a digital space has been a focus of research for over 30 years. Digital line segments are particularly important as other digital objects depend on their definition (e.g., digital convex objects or digital star-shaped objects). It may be desirable for the digital line segment systems to satisfy some nice properties that their Euclidean counterparts also satisfy. The system is a consistent digital line segment system (CDS) if it satisfies five properties, most notably the subsegment property (the intersection of any two digital line segments should be connected) and the prolongation property (any digital line segment should be able to be extended into a digital line). It is known that any CDS must have Ω(log n) Hausdorff distance to their Euclidean counterparts, where n is the number of grid points on a segment. In fact this lower bound even applies to consistent digital rays (CDR) where for a fixed p ∈ ℤ², we consider the digital segments from p to q for each q ∈ ℤ². In this paper, we consider families of weak consistent digital rays (WCDR) where we maintain four of the CDR properties but exclude the prolongation property. In this paper, we give a WCDR construction that has optimal Hausdorff distance to the exact constant. That is, we give a construction whose Hausdorff distance is 1.5 under the L_∞ metric, and we show that for every ε > 0, it is not possible to have a WCDR with Hausdorff distance at most 1.5 - ε.more » « less
-
Czumaj, Artur Dawar (Ed.)We consider the complexity of counting weighted graph homomorphisms defined by a symmetric matrix A. Each symmetric matrix A defines a graph homomorphism function Z A (·), also known as the partition function. Dyer and Greenhill [10] established a complexity dichotomy of Z A (·) for symmetric {0, 1}-matrices A, and they further proved that its #P-hardness part also holds for bounded degree graphs. Bulatov and Grohe [4] extended the Dyer-Greenhill dichotomy to nonnegative symmetric matrices A. However, their hardness proof requires graphs of arbitrarily large degree, and whether the bounded degree part of the Dyer-Greenhill dichotomy can be extended has been an open problem for 15 years. We resolve this open problem and prove that for nonnegative symmetric A, either Z A (G) is in polynomial time for all graphs G, or it is #P-hard for bounded degree (and simple) graphs G. We further extend the complexity dichotomy to include nonnegative vertex weights. Additionally, we prove that the #P-hardness part of the dichotomy by Goldberg et al. [12] for Z A (·) also holds for simple graphs, where A is any real symmetric matrix.more » « less
-
Czumaj, Artur; Dawar, Anuj; Merelli, Emanuela (Ed.)Consider a set P ⊆ ℝ^d of n points, and a convex body C provided via a separation oracle. The task at hand is to decide for each point of P if it is in C using the fewest number of oracle queries. We show that one can solve this problem in two and three dimensions using O(⬡_P log n) queries, where ⬡_P is the largest subset of points of P in convex position. In 2D, we provide an algorithm which efficiently generates these adaptive queries. Furthermore, we show that in two dimensions one can solve this problem using O(⊚(P,C) log² n) oracle queries, where ⊚(P,C) is a lower bound on the minimum number of queries that any algorithm for this specific instance requires. Finally, we consider other variations on the problem, such as using the fewest number of queries to decide if C contains all points of P. As an application of the above, we show that the discrete geometric median of a point set P in ℝ² can be computed in O(n log² n (log n log log n + ⬡(P))) expected time.more » « less