skip to main content


Title: Adversarial Attack on Graph Structured Data
Deep learning on graph structures has shown exciting results in various applications. However, few attentions have been paid to the robustness of such models, in contrast to numerous research work for image or text adversarial attack and defense. In this paper, we focus on the adversarial attacks that fool deep learning models by modifying the combinatorial structure of data. We first propose a reinforcement learning based attack method that learns the generalizable attack policy, while only requiring prediction labels from the target classifier. We further propose attack methods based on genetic algorithms and gradient descent in the scenario where additional prediction confidence or gradients are available. We use both synthetic and real-world data to show that, a family of Graph Neural Network models are vulnerable to these attacks, in both graph-level and node-level classification tasks. We also show such attacks can be used to diagnose the learned classifiers.  more » « less
Award ID(s):
1704701
NSF-PAR ID:
10095927
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the 35th International Conference on Machine Learning, PMLR
Volume:
80
Page Range / eLocation ID:
1115-1124
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent advances in machine learning enable wider applications of prediction models in cyber-physical systems. Smart grids are increasingly using distributed sensor settings for distributed sensor fusion and information processing. Load forecasting systems use these sensors to predict future loads to incorporate into dynamic pricing of power and grid maintenance. However, these inference predictors are highly complex and thus vulnerable to adversarial attacks. Moreover, the adversarial attacks are synthetic norm-bounded modifications to a limited number of sensors that can greatly affect the accuracy of the overall predictor. It can be much cheaper and effective to incorporate elements of security and resilience at the earliest stages of design. In this paper, we demonstrate how to analyze the security and resilience of learning-based prediction models in power distribution networks by utilizing a domain-specific deep-learning and testing framework. This framework is developed using DeepForge and enables rapid design and analysis of attack scenarios against distributed smart meters in a power distribution network. It runs the attack simulations in the cloud backend. In addition to the predictor model, we have integrated an anomaly detector to detect adversarial attacks targeting the predictor. We formulate the stealthy adversarial attacks as an optimization problem to maximize prediction loss while minimizing the required perturbations. Under the worst-case setting, where the attacker has full knowledge of both the predictor and the detector, an iterative attack method has been developed to solve for the adversarial perturbation. We demonstrate the framework capabilities using a GridLAB-D based power distribution network model and show how stealthy adversarial attacks can affect smart grid prediction systems even with a partial control of network. 
    more » « less
  2. Machine learning-based security detection models have become prevalent in modern malware and intrusion detection systems. However, previous studies show that such models are susceptible to adversarial evasion attacks. In this type of attack, inputs (i.e., adversarial examples) are specially crafted by intelligent malicious adversaries, with the aim of being misclassified by existing state-of-the-art models (e.g., deep neural networks). Once the attackers can fool a classifier to think that a malicious input is actually benign, they can render a machine learning-based malware or intrusion detection system ineffective. Objective To help security practitioners and researchers build a more robust model against non-adaptive, white-box and non-targeted adversarial evasion attacks through the idea of ensemble model. Method We propose an approach called Omni, the main idea of which is to explore methods that create an ensemble of “unexpected models”; i.e., models whose control hyperparameters have a large distance to the hyperparameters of an adversary’s target model, with which we then make an optimized weighted ensemble prediction. Results In studies with five types of adversarial evasion attacks (FGSM, BIM, JSMA, DeepFool and Carlini-Wagner) on five security datasets (NSL-KDD, CIC-IDS-2017, CSE-CIC-IDS2018, CICAndMal2017 and the Contagio PDF dataset), we show Omni is a promising approach as a defense strategy against adversarial attacks when compared with other baseline treatments Conclusions When employing ensemble defense against adversarial evasion attacks, we suggest to create ensemble with unexpected models that are distant from the attacker’s expected model (i.e., target model) through methods such as hyperparameter optimization. 
    more » « less
  3. Model-based attacks can infer training data information from deep neural network models. These attacks heavily depend on the attacker's knowledge of the application domain, e.g., using it to determine the auxiliary data for model-inversion attacks. However, attackers may not know what the model is used for in practice. We propose a generative adversarial network (GAN) based method to explore likely or similar domains of a target model -- the model domain inference (MDI) attack. For a given target (classification) model, we assume that the attacker knows nothing but the input and output formats and can use the model to derive the prediction for any input in the desired form. Our basic idea is to use the target model to affect a GAN training process for a candidate domain's dataset that is easy to obtain. We find that the target model may distort the training procedure less if the domain is more similar to the target domain. We then measure the distortion level with the distance between GAN-generated datasets, which can be used to rank candidate domains for the target model. Our experiments show that the auxiliary dataset from an MDI top-ranked domain can effectively boost the result of model-inversion attacks.

     
    more » « less
  4. Models produced by machine learning, particularly deep neural networks, are state-of-the-art for many machine learning tasks and demonstrate very high prediction accuracy. Unfortunately, these models are also very brittle and vulnerable to specially crafted adversarial examples. Recent results have shown that accuracy of these models can be reduced from close to hundred percent to below 5\% using adversarial examples. This brittleness of deep neural networks makes it challenging to deploy these learning models in security-critical areas where adversarial activity is expected, and cannot be ignored. A number of methods have been recently proposed to craft more effective and generalizable attacks on neural networks along with competing efforts to improve robustness of these learning models. But the current approaches to make machine learning techniques more resilient fall short of their goal. Further, the succession of new adversarial attacks against proposed methods to increase neural network robustness raises doubts about a foolproof approach to robustify machine learning models against all possible adversarial attacks. In this paper, we consider the problem of detecting adversarial examples. This would help identify when the learning models cannot be trusted without attempting to repair the models or make them robust to adversarial attacks. This goal of finding limitations of the learning model presents a more tractable approach to protecting against adversarial attacks. Our approach is based on identifying a low dimensional manifold in which the training samples lie, and then using the distance of a new observation from this manifold to identify whether this data point is adversarial or not. Our empirical study demonstrates that adversarial examples not only lie farther away from the data manifold, but this distance from manifold of the adversarial examples increases with the attack confidence. Thus, adversarial examples that are likely to result into incorrect prediction by the machine learning model is also easier to detect by our approach. This is a first step towards formulating a novel approach based on computational geometry that can identify the limiting boundaries of a machine learning model, and detect adversarial attacks. 
    more » « less
  5. Deep learning models have been used in creating various effective image classification applications. However, they are vulnerable to adversarial attacks that seek to misguide the models into predicting incorrect classes. Our study of major adversarial attack models shows that they all specifically target and exploit the neural networking structures in their designs. This understanding led us to develop a hypothesis that most classical machine learning models, such as random forest (RF), are immune to adversarial attack models because they do not rely on neural network design at all. Our experimental study of classical machine learning models against popular adversarial attacks supports this hypothesis. Based on this hypothesis, we propose a new adversarial-aware deep learning system by using a classical machine learning model as the secondary verification system to complement the primary deep learning model in image classification. Although the secondary classical machine learning model has less accurate output, it is only used for verification purposes, which does not impact the output accuracy of the primary deep learning model, and, at the same time, can effectively detect an adversarial attack when a clear mismatch occurs. Our experiments based on the CIFAR-100 dataset show that our proposed approach outperforms current state-of-the-art adversarial defense systems. 
    more » « less