skip to main content

Title: Computational Thinking in Practice: How STEM Professionals Use CT in Their Work
The goal of this study is to bring current computational thinking in STEM educational efforts in line with the increasingly computational nature of STEM research practices. We conducted interviews with STEM practitioners in various fields to understand the nature of CT as it happens in authentic research settings and to revisit a first iteration of our definition of CT in form of a taxonomy. This exploration gives us insight into how scientists use computers in their work and help us identify what practices are important to include in high school STEM learning contexts. Our findings will inform the design of classroom activities to better prepare today’s students for the modern STEM landscape that awaits them.
Authors:
Award ID(s):
1640201
Publication Date:
NSF-PAR ID:
10026245
Journal Name:
American Education Research Association Annual Meeting 2017
Sponsoring Org:
National Science Foundation
More Like this
  1. The impact of robotics has grown beyond research laboratories and industrial facilities into home environments and primary and secondary school classrooms. Of particular interest to us are robots for education. In general, educational robotics kits are expensive and proprietary, or cheap and unreliable. This research seeks to bridge that gap by providing a hands-on open-source robotics learning environment that is both inexpensive and reliable. In this paper, we review the applicability of such environments to support the synergistic learning of computational thinking (CT) and STEM, with an emphasis on Computer Science (CS) concepts and practices. The CT and Advanced Placement CS Principles frameworks (from the US) govern the design and implementation of our system. We discuss the hardware system of the robot and the accompanying software architecture that runs on Linux-based single board computers. We conclude with results from a small pilot study analyzing the usability and curricular effectiveness of the system.
  2. The impact of robotics has grown beyond research laboratories and industrial facilities into home environments and primary and secondary school classrooms. Of particular interest to us are robots for education. In general, educational robotics kits are expensive and proprietary, or cheap and unreliable. This research seeks to bridge that gap by providing a hands-on open-source robotics learning environment that is both inexpensive and reliable. In this paper, we review the applicability of such environments to support the synergistic learning of computational thinking (CT) and STEM, with an emphasis on Computer Science (CS) concepts and practices. The CT and Advanced Placement CS Principles frameworks (from the US) govern the design and implementation of our system. We discuss the hardware system of the robot and the accompanying software architecture that runs on Linux-based single board computers. We conclude with results from a small pilot study analyzing the usability and curricular effectiveness of the system.
  3. While the Next Generation Science Standards set an expectation for developing computer science and computational thinking (CT) practices in the context of science subjects, it is an open question as to how to create curriculum and assessments that develop and measure these practices. In this poster, we show one possible solution to this problem: to introduce students to computer science through infusing computational thinking practices ("CT-ifying") science classrooms. To address this gap, our group has worked to explicitly characterize core CT-STEM practices as specific learning objectives and we use these to guide our development of science curriculum and assessments. However, having these learning objectives in mind is not enough to actually create activities that engage students in CT practices. We have developed along with science teachers, a strategy of examining a teacher’s existing curricula and identifying potential activities and concepts to “CT-ify”, rather than creating entirely new curricula from scratch by using the concept of scale as an “attack vector” to design science units that integrate computational thinking practices into traditional science curricula. We demonstrate how we conceptualize four different versions of scale in science, 1. Time, 2. Size, 3. Number, and 4. Repeatability. We also present examples of thesemore »concepts in traditional high school science curricula that hundreds of students in a large urban US school district have used.« less
  4. In the decades since Papert published Mindstorms (1980), computation has transformed nearly every branch of scientific practice. Accordingly, there is increasing recognition that computation and computational thinking (CT) must be a core part of STEM education in a broad range of subjects. Previous work has demonstrated the efficacy of incorporating computation into STEM courses and introduced a taxonomy of CT practices in STEM. However, this work rarely involved teachers as more than implementers of units designed by researchers. In The Children’s Machine, Papert asked “What can be done to mobilize the potential force for change inherent in the position of teachers?” (Papert, 1994, pg. 79). We argue that involving teachers as co-design partners supports them to be cultural change agents in education. We report here on the first phase of a research project in which we worked with STEM educators to co-design curricular science units that incorporate computational thinking and practices. Eight high school teachers and one university professor joined nine members of our research team for a month-long Computational Thinking Summer Institute (CTSI). The co-design process was a constructionist design and learning experience for both the teachers and researchers. We focus here on understanding the co-design process and itsmore »implications for teachers by asking: (1) How did teachers shift in their attitudes and confidence regarding CT? (2) What different co-design styles emerged and did any tensions arise? Generally, we found that teachers gained confidence and skills in CT and computational tools over the course of the summer. Only one teacher reported a decrease in confidence in one aspect of CT (computational modeling), but this seemed to result from gaining a broader and more nuanced understanding of this rich area. A range of co-design styles emerged over the summer. Some teachers chose to focus on designing the curriculum and advising on the computational tools to be used in it, while leaving the construction of those tools to their co-designers. Other teachers actively participated in constructing models and computational tools themselves. The pluralism of co-design styles allowed teachers of various comfort levels with computation to meaningfully contribute to a computationally enhanced constructionist curriculum. However, it also led to a tension for some teachers between working to finish their curriculum versus gaining experience with computational tools. In the time crunch to complete their unit during CTSI, some teachers chose to save time by working on the curriculum while their co-design partners (researchers) created the supporting computational tools. These teachers still grew in their computational sophistication, but they could not devote as much time as they wanted to their own computational learning.« less
  5. C2STEM is a web-based learning environment founded on a novel paradigm that combines block-structured, visual programming with the concept of domain specific modeling languages (DSMLs) to promote the synergistic learning of discipline-specific and computational thinking (CT) concepts and practices. Our design-based, collaborative learning environment aims to provide students in K-12 classrooms with immersive experiences in CT through computational modeling in realistic scenarios (e.g., building models of scientific phenomena). The goal is to increase student engagement and include inclusive opportunities for developing key computational skills needed for the 21st century workforce. Research implementations that include a semester-long high school physics classroom study have demonstrated the effectiveness of our approach in supporting synergistic learning of STEM and CS/CT concepts and practices, especially when compared to a traditional classroom approach. This technology demonstration will showcase our CS+X (X = physics, marine biology, or earth science) learning environment and associated curricula. Participants can engage in our design process and learn how to develop curricular modules that cover STEM and CS/CT concepts and practices. Our work is supported by an NSF STEM+C grant and involves a multi-institutional team comprising Vanderbilt University, SRI International, Looking Glass Ventures, Stanford University, Salem State University, and ETR. More information,more »including example computational modeling tasks, can be found at C2STEM.org.« less