skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Inducing Stealth Assessors from Game Interaction Data
A key untapped feature of game-based learning environments is their capacity to generate a rich stream of fine-grained learning interaction data. The learning behaviors captured in these data provide a wealth of information on student learning, which stealth assessment can utilize to unobtrusively draw inferences about student knowledge to provide tailored problem-solving support. In this paper, we present a long short-term memory network (LSTM)-based stealth assessment framework that takes as input an observed sequence of raw game-based learning environment interaction data along with external pre-learning measures to infer students’ post-competencies. The framework is evaluated using data collected from 191 middle school students interacting with a game-based learning environment for middle grade computational thinking. Results indicate that LSTM-based stealth assessors induced from student game-based learning interaction data outperform comparable models that required labor-intensive hand-engineering of input features. The findings suggest that the LSTM-based approach holds significant promise for evidence modeling in stealth assessment.  more » « less
Award ID(s):
1640141
PAR ID:
10026308
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Artificial Intelligence in Education
Page Range / eLocation ID:
212-223
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A key affordance of game-based learning environments is their potential to unobtrusively assess student learning without interfering with gameplay. In this paper, we introduce a temporal analytics framework for stealth assessment that analyzes students' problem-solving strategies. The strategy-based temporal analytic framework uses long short-term memory network-based evidence models and clusters sequences of students' problem-solving behaviors across consecutive tasks. We investigate this strategy based temporal analytics framework on a dataset of problem solving behaviors collected from student interactions with a game-based learning environment for middle school computational thinking. The results of an evaluation indicate that the strategy-based temporal analytics framework significantly outperforms competitive baseline models with respect to stealth assessment predictive accuracy. 
    more » « less
  2. Benjamin, Paaßen; Carrie, Demmans Epp (Ed.)
    Collaborative game-based learning offers opportunities for students to participate in small group learning experiences that foster knowledge sharing, problem solving, and engagement. Student satisfaction with their collaborative experiences plays a pivotal role in shaping positive learning outcomes and is a critical factor in group success during learning. Gauging students申f satisfaction within collaborative learning contexts can offer insights into student engagement and participation levels while affording practitioners the ability to provide targeted interventions or scaffolding. In this paper,we propose a framework for inferring student collaboration satisfaction with multimodal learning analytics from collaborative interactions. Utilizing multimodal data collected from 50 middle school students engaged in collaborative game-based learning, we predict student collaboration satisfaction. We first evaluate the performance of baseline models on individual modalities for insight into which modalities are most informative. We then devise a multimodal deep learning model that leverages a cross-attention mechanism to attend to salient information across modalities to enhance collaboration satisfaction prediction. Finally,we conduct ablation and feature importance analysis to understand which combination of modalities and features is most effective. Findings indicate that various combinations of data sources are highly beneficial for student collaboration satisfaction prediction. 
    more » « less
  3. Pedagogical agents offer significant promise for engaging students in learning. In this paper, we investigate students’ conversational interactions with a pedagogical agent in a game-based learning environment for middle school sci- ence education. We utilize word embeddings of student-agent conversations along with features distilled from students’ in-game actions to induce predictive models of student engagement. An evaluation of the models’ accuracy and early prediction performance indicates that features derived from students’ conversa- tions with the pedagogical agent yield the highest accuracy for predicting student engagement. Results also show that combining student problem-solving features and conversation features yields higher performance than a problem solving-only feature set. Overall, the findings suggest that student-agent conversations can greatly enhance student models for game-based learning environments. 
    more » « less
  4. Abstract Understanding students’ multi-party epistemic and topic based-dialogue contributions, or how students present knowledge in group-based chat interactions during collaborative game-based learning, offers valuable insights into group dynamics and learning processes. However, manually annotating these contributions is labor-intensive and challenging. To address this, we develop an automated method for recognizing dialogue acts from text chat data of small groups of middle school students interacting in a collaborative game-based learning environment. Our approach utilizes dual contrastive learning and label-aware data augmentation to fine-tune large language models’ underlying embedding representations within a supervised learning framework for epistemic and topic-based dialogue act classification. Results show that our method achieves a performance improvement of 4% to 8% over baseline methods in two key classification scenarios. These findings highlight the potential for automated dialogue act recognition to support understanding of how meaning-making occurs by focusing on the development and evolution of knowledge in group discourse, ultimately providing teachers with actionable insights to better support student learning. 
    more » « less
  5. This paper demonstrated how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. Using a data-driven approach, we examined 1) how different ML algorithms influenced the precision of middle-school students’ (N = 359) performance (i.e. posttest math knowledge scores) prediction and 2) what types of in-game features (i.e. student in-game behaviors, math anxiety, mathematical strategies) were associated with student math knowledge scores. The results indicated that the Random Forest algorithm showed the best performance (i.e. the accuracy of models, error measures) in predicting posttest math knowledge scores among the seven algorithms employed. Out of 37 features included in the model, the validity of the students’ first mathematical transformation was the most predictive of their posttest math knowledge scores. Implications for game learning analytics and supporting students’ algebraic learning are discussed based on the findings. 
    more » « less