It remains an open question how to determine the winner of an election when voter preferences are incomplete or uncertain. One option is to assume some probability space over the voting profile and select the Most Probable Winner (MPW) -- the candidate or candidates with the best chance of winning. In this paper, we propose an alternative winner interpretation, selecting the Most Expected Winner (MEW) according to the expected performance of the candidates. We separate the uncertainty in voter preferences into the generation step and the observation step, which gives rise to a unified voting profile combining both incomplete and probabilistic voting profiles. We use this framework to establish the theoretical hardness of MEW over incomplete voter preferences, and then identify a collection of tractable cases for a variety of voting profiles, including those based on the popular Repeated Insertion Model (RIM) and its special case, the Mallows model. We develop solvers customized for various voter preference types to quantify the candidate performance for the individual voters, and propose a pruning strategy that optimizes computation. The performance of the proposed solvers and pruning strategy is evaluated extensively on real and synthetic benchmarks, showing that our methods are practical.
more »
« less
The Complexity of Campaigning
In "The Logic of Campaigning", Dean and Parikh consider a candidate making campaign statements to appeal to the voters. They model these statements as Boolean formulas over variables that repre- sent stances on the issues, and study optimal candidate strategies under three proposed models of voter preferences based on the assignments that satisfy these formulas. We prove that voter utility evaluation is computationally hard under these preference models (in one case, #P-hard), along with certain problems related to candidate strategic reasoning. Our results raise questions about the desirable characteristics of a voter preference model and to what extent a polynomial-time-evaluable function can capture them.
more »
« less
- PAR ID:
- 10033362
- Date Published:
- Journal Name:
- Algorithmic Decision Theory 2017
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The study of fairness in multiwinner elections focuses on settings where candidates have attributes. However, voters may also be divided into predefined populations under one or more attributes. The models that focus on candidate attributes alone may systematically under-represent smaller voter populations. Hence, we develop a model, DiRe Committee Winner Determination (DRCWD), which delineates candidate and voter attributes to select a committee by specifying diversity and representation constraints and a voting rule. We analyze its computational complexity and develop a heuristic algorithm, which finds the winning DiRe committee in under two minutes on 63% of the instances of synthetic datasets and on 100% of instances of real-world datasets. We also present an empirical analysis of feasibility and utility traded-off. Moreover, even when the attributes of candidates and voters coincide, it is important to treat them separately as diversity does not imply representation and vice versa. This is to say that having a female candidate on the committee, for example, is different from having a candidate on the committee who is preferred by the female voters, and who themselves may or may not be female.more » « less
-
It remains an open question how to determine the winner of an election given incomplete or uncertain voter preferences. One solution is to assume some probability space for the voting profile and declare that the candidates having the best chance of winning are the (co-)winners. We refer to this interpretation as the Most Probable Winner (MPW). In this paper, we focus on elections that use positional scoring rules, and propose an alternative winner interpretation, the Most Expected Winner (MEW), according to the expected performance of the candidates. We separate the uncertainty in voter preferences into the generation step and the observation step, which gives rise to a unified voting profile combining both incomplete and probabilistic voting profiles. We use this framework to establish the theoretical hardness of MEW over incomplete voter preferences, and then identify a collection of tractable cases for a variety of voting profiles, including those based on the popular Repeated Insertion Model (RIM) and its special case, the Mallows model. We develop solvers customized for various voter preference types to quantify the candidate performance for the individual voters, and propose a pruning strategy that optimizes computation. The performance of the proposed solvers and pruning strategy is evaluated extensively on real and synthetic benchmarks, showing that our methods are practical.more » « less
-
We consider the electoral bribery problem in computational social choice. In this context, extensive studies have been carried out to analyze the computational vulnerability of various voting (or election) rules. However, essentially all prior studies assume a deterministic model where each voter has an associated threshold value, which is used as follows. A voter will take a bribe and vote according to the attacker's (i.e., briber's) preference when the amount of the bribe is above the threshold, and a voter will not take a bribe when the amount of the bribe is not above the threshold (in this case, the voter will vote according to its own preference, rather than the attacker's). In this paper, we initiate the study of a more realistic model where each voter is associated with a willingness function, rather than a fixed threshold value. The willingness function characterizes the likelihood a bribed voter would vote according to the attacker's preference; we call this bribe-effect uncertainty. We characterize the computational complexity of the electoral bribery problem in this new model. In particular, we discover a dichotomy result: a certain mathematical property of the willingness function dictates whether or not the computational hardness can serve as a deterrence to bribery attackers.more » « less
-
Abstract Political and social processes that shape people's voting preferences might be linked to geographical location, varying from place to place, and operating at local, regional, and national scales. Here, we use a local modeling technique, multiscale geographically weighted regression (MGWR), to examine spatial and temporal variations in the influences of county‐level socio‐economic factors on voter preference during the 2008–2020 U.S. presidential elections. We argue that the local intercept in the MGWR model is an indicator of the effect of spatial context on voter preference and not only can this be separated from the effect of other socio‐economic factors, but it needs to be in order to prevent misspecification bias in the indicators of these other factors. We also identify strong and consistent divisions across the country in how context shapes election results.more » « less
An official website of the United States government

