skip to main content


Title: Protecting analog circuits with parameter biasing obfuscation
A methodology to secure analog intellectual property (IP) by obfuscating biasing conditions is presented in this paper. Previous research methodologies have focused on protecting digital IP from theft, overproduction, counterfeiting, and Trojan insertion. Analog IP has not been investigated as it does not share the same replicated structures and functionalities used for digital protection. The bias encryption techniques presented in this paper are implemented on a phase locked loop (PLL). The operating frequency of the PLL is masked in the range of 800 MHz to 2.2 GHz with a 40-bit encryption key. The probability of determining the correct key through brute force attack is 9.095×10-13. The overheads of encrypting the PLL include a 6.3% increase in active area, a 0.89% increase in power consumption, and a 5 dBc/Hz increase in phase noise.  more » « less
Award ID(s):
1648878
NSF-PAR ID:
10040252
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2017 IEEE Latin American Test Symposium (LATS)
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Although digital phase-locked loops (PLLs) offer several advantages over their analog counterparts, they suffer from a major disadvantage that is rarely mentioned in published articles. The disadvantage, known as spectral breathing, is caused by component mismatches among the frequency control elements within a PLL's digitally controlled oscillator (DCO). The mismatches introduce DCO frequency modulation nonlinearity which fluctuates and, therefore, causes erratic variations in the PLL's measured phase noise spectrum as the DCO's free-running frequency drifts. The phenomenon is called spectral breathing because the measured phase noise spectrum tends to slowly swell and contract over time as if taking breaths of air. During these breaths, the PLL's phase noise often becomes severely degraded. This article presents an experimental demonstration of the spectral breathing phenomenon and its solution in a digital fractional-N PLL. The demonstrated solution is a multi-rate dynamic element matching technique and a mismatch-noise cancellation technique that together eliminate spectral breathing. 
    more » « less
  2. In this paper, an approach is described for enhancing the security of analog circuits using Satisfiability Modulo theory (SMT) based design space exploration. The technique takes as inputs generic circuit equations and performance constraints and, by exhaustively exploring the design space, outputs transistor sizes that satisfy the given constraints. The analog satisfiability (aSAT) methodology is applied to parameter biasing obfuscation, where the width of a transistor is obfuscated to mask circuit properties, while also limiting the number of keys that produce the target performance requirements. The proposed methodology is used in the design of a differential amplifier and a two stage amplifier. The widths determined through aSAT analysis are shown to meet the gain, phase margin, and power consumption requirements for both a differential amplifier and a two-stage amplifier. However, a 7 MHz offset in the gain-bandwidth of the two-stage amplifier is observed from the target value of 30 MHz. The total gain of the two stage amplifier is masked with a 24 bit encryption key that results in a probability of 5.96x10-08 to determine the correct key. The simulated results indicate that the proposed analog design methodology quickly and accurately determines transistor sizes for target specifications, while also accounting for obfuscation of analog circuit parameters. 
    more » « less
  3. Millimeter wave (mmW) communications is viewed as the key enabler of 5G cellular networks due to vast spectrum availability that could boost peak rate and capacity. Due to increased propagation loss in mmW band, transceivers with massive antenna array are required to meet a link budget, but their power consumption and cost become limiting factors for commercial systems. Radio designs based on hybrid digital and analog array architectures and the usage of radio frequency (RF) signal processing via phase shifters have emerged as potential solutions to improve radio energy efficiency and deliver performances close to the conventional digital antenna arrays. In this paper, we provide an overview of the state-of-the-art mmW massive antenna array designs and comparison among three array architectures, namely digital array, partially-connected hybrid array (sub-array), and fully-connected hybrid array. The comparison of performance, power, and area for these three architectures is performed for three representative 5G downlink use cases, which cover a range of pre-beamforming signal-to-noise-ratios (SNR) and multiplexing regimes. This is the first study to comprehensively model and quantitatively analyze all design aspects and criteria including: 1) optimal linear precoder, 2) impact of quantization error in digital-to-analog converter (DAC) and phase shifters, 3) RF signal distribution network, 4) power and area estimation based on state-of-the-art mmW circuits including baseband digital precoding, digital signal distribution network, high-speed DACs, oscillators, mixers, phase shifters, RF signal distribution network, and power amplifiers. Our simulation results show that the fully-digital array architecture is the most power and area efficient compared against optimized designs for sub-array and hybrid array architectures. Our analysis shows that digital array architecture benefits greatly from multi-user multiplexing. The analysis also reveals that sub-array architecture performance is limited by reduced beamforming gain due to array partitioning, while the system bottleneck of the fully-connected hybrid architecture is the excessively complicated and power hungry RF signal distribution network. 
    more » « less
  4. Logic encryption, a method to lock a circuit from unauthorized use unless the correct key is provided, is the most important technique in hardware IP protection. However, with the discovery of the SAT attack, all traditional logic encryption algorithms are broken. New algorithms after the SAT attack are all vulnerable to structural analysis unless a provable obfuscation is applied to the locked circuit. But there is no provable logic obfuscation available, in spite of some vague resorting to logic resynthesis. In this paper, we formulate and discuss a trilemma in logic encryption among locking robustness, structural security, and encryption efficiency, showing that pre-SAT approaches achieve only structural security and encryption efficiency, and post-SAT approaches achieve only locking robustness and encryption efficiency. There is also a dilemma between query complexity and error number in locking. We first develop a theory and solution to the dilemma in locking between query complexity and error number. Then, we provide a provable obfuscation solution to the dilemma between structural security and locking robustness. We finally present and discuss some results towards the resolution of the trilemma in logic encryption. 
    more » « less
  5. On-chip learning with compute-in-memory (CIM) paradigm has become popular in machine learning hardware design in the recent years. However, it is hard to achieve high on-chip learning accuracy due to the high nonlinearity in the weight update curve of emerging nonvolatile memory (eNVM) based analog synapse devices. Although digital synapse devices offer good learning accuracy, the row-by-row partial sum accumulation leads to high latency. In this paper, the methods to solve the aforementioned issues are presented with a device-to-algorithm level optimization. For analog synapses, novel hybrid precision synapses with good linearity and more advanced training algorithms are introduced to increase the on-chip learning accuracy. The latency issue for digital synapses can be solved by using parallel partial sum read-out scheme. All these features are included into the recently released MLP + NeuroSimV3.0, which is an in-house developed device-to-system evaluation framework for neuro-inspired accelerators based on CIM paradigm. 
    more » « less