skip to main content


Title: Terrestrial ecosystem model performance in simulating productivity and its vulnerability to climate change in the northern permafrost region: Modeled Productivity in Permafrost Regions
Award ID(s):
1636476
NSF-PAR ID:
10045610
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;   « less
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Geophysical Research: Biogeosciences
Volume:
122
Issue:
2
ISSN:
2169-8953
Page Range / eLocation ID:
430 to 446
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Isotopic radiocarbon (Δ14C) signatures of ecosystem respiration (Reco) can identify old soil carbon (C) loss and serve as an early indicator of permafrost destabilization in a warming climate. Warming also stimulates plant productivity causing plant respiration to dominate Reco Δ14C signatures and potentially obscuring old soil C loss. Here, we investigate how a wide spatio‐temporal gradient of permafrost thaw and plant productivity affects Reco Δ14C patterns and isotopic partitioning. Spatial gradients came from a warming experiment with doubling thaw depth and variable biomass, and a vegetation removal manipulation to eliminate plant contributions. We sampled in August and September to capture transitions from high to low plant productivity, decreased surface soil temperature, and relatively small seasonal thaw extensions. We found that surface processes dominate spatial variation in old soil C loss and a process‐based partitioning approach was crucial for constraining old soil C loss. Resampling the same plots in different times of the year revealed that old soil C losses tripled with cooling surface temperature, and the largest old soil C losses were detected when the organic‐to‐mineral soil horizons thawed (∼50–60 cm). We suggest that the measured increase in old soil respiration over the season and when the organic‐to‐mineral horizon thawed, may be explained by mobilization of nitrogen that stimulates microbial decomposition at depth. Our results suggest that soil C in the organic to mineral horizon may be an important source of soil C loss as the entire Arctic region warms and could lead to nonlinearities in projected permafrost climate feedbacks.

     
    more » « less
  2. ### Access Photos of ~50 permaforst boreholes and associated cores can be accessed and downloaded from the 'AR\_Fire\_Core_Photos' directory via: [https://arcticdata.io/data/10.18739/A2251FM9P/](https://arcticdata.io/data/10.18739/A2251FM9P/) ### Overview The Anaktuvuk River tundra fire burned more than 1,000 square kilometers of permafrost-affected arctic tundra in northern Alaska in 2007. The fire is the largest historical recorded tundra fire on the North Slope of Alaska. Fifty percent of the burn area is underlain by Yedoma permafrost that is characterized by extremely high ground-ice content of organic-rich, silty buried soils and the occurrence of large, syngenetic polygonal ice wedges. Given the high ground-ice content of this terrain, Yedoma is thought to be among the most vulnerable to fire-induced thermokarst in the Arctic. With this dataset, we update observations on near-surface permafrost in the Anaktuvuk River tundra fire burn area from 2009 to 2023 using repeat airborne LiDAR-derived elevation data, ground temperature measurements, and cryostratigraphic studies. We have provided all of the data that has gone into an analysis and resulting paper that has been submitted for peer review at the journal Scientific Reports. The datasets include: - 1 m spatial resolution airborne LiDAR-derived digital terrain models from the summers of 2009, 2014, and 2021. - The area in which thaw subsidence was detected in the multi-temporal LiDAR data using the Geomorphic Change Detection software. - A terrain unit map developed for the 50 square kilometer study area. - Ground temperature time series measurements for a logger located in the burned area and a logger located in an unburned area. The ground temperature data consist of daily mean measurements at a depth of 0.15 m (active layer) and 1.00 m (permafrost) from July 2009 to August 2023. - Photos ~50 permafrost boreholes and the associated cores collected there. - A borehole log and notes pdf also accompanies our studies on the cryostratigraphy of permafrost post-fire and our observations on the recovery of permafrost. 
    more » « less
  3. Permafrost, as an important part of the Cryosphere, has been strongly affected by climate warming, and a wide spread of permafrost responses to the warming is currently observed. In particular, at some locations rather slow rates of permafrost degradations are noticed. We related this behavior to the presence of unfrozen water in frozen fine‐grained earth material. In this paper, we examine not‐very‐commonly‐discussed heat flux from the ground surface into the permafrost and consequently discuss implications of the presence of unfrozen liquid water on long‐term thawing of permafrost. We conducted a series of numerical experiments and demonstrated that the presence of fine‐grained material with substantial unfrozen liquid water content at below 0°C temperature can significantly slow down the thawing rate and hence can increase resilience of permafrost to the warming events. This effect is highly nonlinear, and a difference between the rates of thawing in fine‐ and coarse‐grained materials is more drastic for lower values of heat flux incoming into permafrost. For high heat flux, the difference between these rates almost disappears. As near‐surface permafrost temperature increases towards 0°C and the changes in the ground temperature become less evident, the future observation networks should try to incorporate measurements of unfrozen liquid water content in the near‐surface permafrost and heat flux into permafrost in addition to the existing temperature observations. 
    more » « less