skip to main content


Title: Zero-Power Feed-Forward Spur Cancelation for Supply-Regulated CMOS Ring PLLs
A new reference-spur cancelation technique is presented for supply-regulated ring-oscillator-based integer-N phaselocked loops (PLLs). A passive RC filter is used to implement a feed-forward (FF) spur-coupling path to perform spur cancelation at the PLL control signal. The proposed technique achieves a simulated spur cancelation of about 22 dB at the first spur harmonic. The simulated postcancelation spur value is -79 dBc for an oscillator gain of 0.1 GHz/V and -46 dBc for an oscillator gain of 6 GHz/V. Spur cancelation is also robust against large process, voltage, and temperature variations in the gain and bandwidth of the FF path. A 1-GHz integerN PLL prototype in a 65-nm CMOS process has a measured cancelation of 19.5 and 13 dB at the first and the second spur harmonic, respectively, with 320 μW of total power consumption. The PLL prototype has an oscillator gain of 1.5 GHz/V, which results in a postcancelation spur of -53 dBc. The proposed zero-power technique is suitable for low-power PLLs as it achieves a large spur cancelation without requiring any additional power consumption or calibration.  more » « less
Award ID(s):
1705026
NSF-PAR ID:
10057553
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE transactions on very large scale integration (VLSI) systems
Volume:
26
Issue:
4
ISSN:
1063-8210
Page Range / eLocation ID:
653-662
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This is the first report of a distributed amplifier (DA) realized through monolithic integration of transistors with a substrate-integrated waveguide (SIW). The DA uses a steppedimpedance microstrip line as the input divider like in conventional DAs, but uses a low-loss, high-power-capacity SIW as the output combiner. The input signal is distributed to four GaN high-electron mobility transistors (HEMTs) evenly in magnitude but with the phase successively delayed by 90° at the fundamental frequency. The HEMTs are separated by a half wavelength at the second harmonic frequency in the SIW, so that their outputs are combined coherently at the SIW output. To overcome the limited speed of the GaN HEMTs, they are driven nonlinearly to generate second harmonics, and their fundamental outputs are suppressed with the SIW acting as a high-pass filter. The measured characteristics of the DA agree with that simulated at the small-signal level, but exceeds that simulated at the large-signal level. For example, under an input of 68 GHz and 10 dBm, the output at 136 GHz is 24-dB above the fundamental. Under an input of 68 GHz and 20 dBm, the output at 136 GHz is 14 dBm, with a conversion loss of 6 dB and a power consumption of 882 mW. This proof-of-principle demonstration opens the path to improving the gain, power and efficiency of DAs with higher-performance transistors and drive circuits. Although the demonstration is through monolithic integration, the approach is applicable to heterogeneous integration with the SIW and transistors fabricated on separate chips. 
    more » « less
  2. This paper presents the design of a 23.7 to 29.9 GHz wide tuning range VCO (Voltage Controlled Oscillator) designed using a 180 nm CMOS process. In order to achieve a good phase noise performance and get a wide frequency tuning range, cross-coupling and gate biasing techniques are utilized in the proposed cross-coupled LC VCO architecture. The simulated phase noise of −130 dBc/Hz is achieved at a 1 MHz offset. With the supply voltage of 1.8 V, the total power consumption of the VCO is 32.04 mW. The proposed VCO has good performance in terms of low-phase noise and has a wide frequency tuning range, which makes it highly suitable for millimeter wave-based applications. 
    more » « less
  3. We present a low phase noise four-core triple-band voltage controlled-oscillator (VCO) with reconfigurable oscillator cores and multi-mode resonator. By activation/deactivation of oscillator cores and change of resonator impedance in three modes of operations, the proposed VCO provides complete freedom in selecting the resonance frequency for three operation bands in the mm-wave range. Compared to VCOs using switch-capacitor-bank for multi-band operation, the proposed VCO does not use any series switches with passive components in the resonator to provide a low phase noise in all three bands of operation. As a proof of concept, the proposed four-core triple-band VCO is implemented in a 65 nm CMOS process using four class-D oscillators with tail switches and a compact high-Q triple-mode resonator. The VCO oscillation frequencies center at 19, 28, and 38 GHz while providing good phase noise and low power consumption in all bands. Measured results show the total frequency tuning range (FTR) of 38.5% while the PN at 1MHz offset varies from -100.3 dBc/Hz to -106.06dBc/Hz resulting in an excellent FoMT of 199.8 dBc/Hz. 
    more » « less
  4. This paper presents a low phase noise 28 GHz voltage-controlled oscillator (VCO) using a transformer-based active impedance converter to enhance the quality factor (Q) of the capacitor in the resonator. The active impedance converter can enhance the Q of a capacitor bank and varactor by 25-40% across the VCO’s tuning range. The proposed VCO is fabricated using the proposed transformer-based Q-enhancement impedance converter in a standard 65 nm CMOS process. The VCO achieves a 15.9% measured fractional frequency tuning range and phase noise of −107.6 dBc/Hz at 1 MHz offset from 28 GHz oscillation frequency while occupying only 0.05 mm2 area (200 μm × 250 μm). The VCO consumes 5.1 mW power, resulting in an excellent figure-of-merit (FoM) of 189.4 dBc/Hz and a figure-of-merit-with-area (FoMA) of 202.8 dBc/Hz. 
    more » « less
  5. This paper presents a highly efficient single-layer substrate-integrated waveguide (SIW) based leaky-wave antenna (LWA) for the millimeter-wave unmanned aerial vehicle (UAV) communication system. The leaky wave-based radiating part of the unit cell includes a combination of two Y-shaped slots with 46° stretched V etched on the top SIW, resulting in a W-shaped structure. The proposed array achieves a high gain of 13.47 dBi for the frequency range of 56.3 GHz to 63.4 GHz covering the unlicensed band, with a fine matching level below -21 dB. Using the leaky wave antenna's frequency scanning capability, the proposed antenna exhibits a scanning range of 38°. The designed antenna shows a promising solution for the UAV-to-UAV applications due to its low profile and compactness and is well-suited for the single-layer low-cost printed circuit board fabrication process using Rogers RT 5880 as substrate. The radiation pattern for the achieved bandwidth shows an average half-power angular beamwidth of 12.1°, resulting in a radiation efficiency of more than 62% for the elements arranged uniformly at a distance of 0.456λ . Following an overall low-profile compact size of 6.48×4 λ corresponding to 3.24×0.2 cm and improved performance, the antenna achieves an elliptical polarization at 60 GHz for an axial ratio equal to 3.5 dBi. 
    more » « less