skip to main content


Title: Evaluating the Stability of Embedding-based Word Similarities
Word embeddings are increasingly being used as a tool to study word associations in specific corpora. However, it is unclear whether such embeddings reflect enduring properties of language or if they are sensitive to inconsequential variations in the source documents. We find that nearest-neighbor distances are highly sensitive to small changes in the training corpus for a variety of algorithms. For all methods, including specific documents in the training set can result in substantial variations. We show that these effects are more prominent for smaller training corpora. We recommend that users never rely on single embedding models for distance calculations, but rather average over multiple bootstrap samples, especially for small corpora.  more » « less
Award ID(s):
1652536
NSF-PAR ID:
10057829
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Transactions of the Association for Computational Linguistics
Volume:
6
ISSN:
2307-387X
Page Range / eLocation ID:
107-119
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Recent years have witnessed the enormous success of text representation learning in a wide range of text mining tasks. Earlier word embedding learning approaches represent words as fixed low-dimensional vectors to capture their semantics. The word embeddings so learned are used as the input features of task-specific models. Recently, pre-trained language models (PLMs), which learn universal language representations via pre-training Transformer-based neural models on large-scale text corpora, have revolutionized the natural language processing (NLP) field. Such pre-trained representations encode generic linguistic features that can be transferred to almost any text-related applications. PLMs outperform previous task-specific models in many applications as they only need to be fine-tuned on the target corpus instead of being trained from scratch. In this tutorial, we introduce recent advances in pre-trained text embeddings and language models, as well as their applications to a wide range of text mining tasks. Specifically, we first overview a set of recently developed self-supervised and weakly-supervised text embedding methods and pre-trained language models that serve as the fundamentals for downstream tasks. We then present several new methods based on pre-trained text embeddings and language models for various text mining applications such as topic discovery and text classification. We focus on methods that are weakly-supervised, domain-independent, language-agnostic, effective and scalable for mining and discovering structured knowledge from large-scale text corpora. Finally, we demonstrate with real world datasets how pre-trained text representations help mitigate the human annotation burden and facilitate automatic, accurate and efficient text analyses. 
    more » « less
  2. Abstract

    Applying machine learning algorithms to automatically infer relationships between concepts from large‐scale collections of documents presents a unique opportunity to investigate at scale how human semantic knowledge is organized, how people use it to make fundamental judgments (“How similar are cats and bears?”), and how these judgments depend on the features that describe concepts (e.g., size, furriness). However, efforts to date have exhibited a substantial discrepancy between algorithm predictions and human empirical judgments. Here, we introduce a novel approach to generating embeddings for this purpose motivated by the idea that semantic context plays a critical role in human judgment. We leverage this idea by constraining the topic or domain from which documents used for generating embeddings are drawn (e.g., referring to the natural world vs. transportation apparatus). Specifically, we trained state‐of‐the‐art machine learning algorithms using contextually‐constrained text corpora (domain‐specific subsets of Wikipedia articles, 50+ million words each) and showed that this procedure greatly improved predictions of empirical similarity judgments and feature ratings of contextually relevant concepts. Furthermore, we describe a novel, computationally tractable method for improving predictions of contextually‐unconstrained embedding models based on dimensionality reduction of their internal representation to a small number of contextually relevant semantic features. By improving the correspondence between predictions derived automatically by machine learning methods using vast amounts of data and more limited, but direct empirical measurements of human judgments, our approach may help leverage the availability of online corpora to better understand the structure of human semantic representations and how people make judgments based on those.

     
    more » « less
  3. Social media is the ultimate challenge for many natural language processing tools. The constant emergence of linguistic constructs challenge even the most sophisticated NLP tools. Predicting word embeddings for out of vocabulary words is one of those challenges. Word embedding models only include terms that occur a sufficient number of times in their training corpora. Word embedding vector models are unable to directly provide any useful information about a word not in their vocabularies. We propose a fast method for predicting vectors for out of vocabulary terms that makes use of the surrounding terms of the unknown term and the hidden context layer of the word2vec model. We propose this method as a strong baseline in the sense that 1) while it does not surpass all state-of-the-art methods, it surpasses several techniques for vector prediction on benchmark tasks, 2) even when it underperforms, the margin is very small retaining competitive performance in downstream tasks, and 3) it is inexpensive to compute, requiring no additional training stage. We also show that our technique can be incorporated into existing methods to achieve a new state-of-the-art on the word vector prediction problem. 
    more » « less
  4. Certain colors are strongly associated with certain adjectives (e.g. red is hot, blue is cold). Some of these associations are grounded in visual experiences like seeing hot embers glow red. Surprisingly, many congenitally blind people show similar color associations, despite lacking all visual experience of color. Presumably, they learn these associations via language. Can we detect these associations in the statistics of language? And if so, what form do they take? We apply a projection method to word embeddings trained on corpora of spoken and written text to identify color-adjective associations as they are represented in language. We show that these projections are predictive of color-adjective ratings collected from blind and sighted people, and that the effect size depends on the training corpus. Finally, we examine how color-adjective associations might be represented in language by training word embeddings on corpora from which various sources of color-semantic information are removed. 
    more » « less
  5. Pre-trained language models (PLMs) aim to learn universal language representations by conducting self-supervised training tasks on large-scale corpora. Since PLMs capture word semantics in different contexts, the quality of word representations highly depends on word frequency, which usually follows a heavy-tailed distributions in the pre-training corpus. Therefore, the embeddings of rare words on the tail are usually poorly optimized. In this work, we focus on enhancing language model pre-training by leveraging definitions of the rare words in dictionaries (e.g., Wiktionary). To incorporate a rare word definition as a part of input, we fetch its definition from the dictionary and append it to the end of the input text sequence. In addition to training with the masked language modeling objective, we propose two novel self-supervised pre-training tasks on word and sentence-level alignment between input text sequence and rare word definitions to enhance language modeling representation with dictionary. We evaluate the proposed Dict-BERT model on the language understanding benchmark GLUE and eight specialized domain benchmark datasets. Extensive experiments demonstrate that Dict-BERT can significantly improve the understanding of rare words and boost model performance on various NLP downstream tasks. 
    more » « less