skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On Multicast Throughput in Multi-hop MIMO Networks with Interference Alignment
Interference alignment (IA) is widely regarded as a promising interference management technique for wireless networks and its potential is most profound in interference-intensive environments. This motivates us to study IA for multicast communications in multi-hop MIMO networks, which are rich in interference by nature. We develop a set of linear constraints that can characterize a feasible design space of IA for multicast communications. The set of linear constraints constitutes a simple mathematical model of IA that allows us to conduct cross-layer multicast throughput optimization in multi-hop MIMO networks, but without getting involved into the onerous signal design at the physical layer. Based on the mathematical model of IA, we formulate a multicast throughput maximization problem and develop an approximation solution that can achieve (1−ϵ)-optimality. Simulation results show that the use of IA can significantly increase the multicast throughput in multi-hop MIMO networks and the throughput gain increases with the volume of multicast traffic and the number of antennas.  more » « less
Award ID(s):
1717840
PAR ID:
10058686
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
IEEE Transactions on Vehicular Technology
ISSN:
0018-9545
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In MIMO communications, it is expensive and sometimes impossible to obtain timely channel state information at transmitter (CSIT) when the number of antennas is large. Furthermore, if the carrier frequency is high, the variation of the phases of the channel state information is significant with small movement in the channels. On the other hand, spatial signal path directions and the amplitudes of path gains vary slowly. We propose a beam network methodology for multi-antenna communication using such partial CSIT as directions and amplitudes instead of the conventional approach that employs full CSIT. Three representative problems are presented to demonstrate the simplicity and performance of the methodology. These include the single-user MIMO channel, a MIMO interference channel, and a multicast network via a reconfigurable intelligent surface (RIS). In particular, we see that the usual high complexity of RIS state design can be simplified to choosing states to connect an incoming beam to outgoing beams. 
    more » « less
  2. This research proposes a dynamic resource allocation method for vehicle-to-everything (V2X) communications in the six generation (6G) cellular networks. Cellular V2X (C-V2X) communications empower advanced applications but at the same time bring unprecedented challenges in how to fully utilize the limited physical-layer resources, given the fact that most of the applications require both ultra low latency, high data rate and high reliability. Resource allocation plays a pivotal role to satisfy such requirements as well as guarantee quality of service (QoS). Based on this observation, a novel fuzzy-logic-assisted Q learning model (FAQ) is proposed to intelligently and dynamically allocate resources by taking advantage of the centralized allocation mode. The proposed FAQ model reuses the resources to maximize the network throughput while minimizing the interference caused by concurrent transmissions. The fuzzy-logic module expedites the learning and improves the performance of the Q-learning. A mathematical model is developed to analyze the network throughput considering the interference. To evaluate the performance, a system model for V2X communications is built for urban areas, where various V2X services are deployed in the network. Simulation results show that the proposed FAQ algorithm can significantly outperform deep reinforcement learning, Q-learning and other advanced allocation strategies regarding the convergence speed and the network throughput. 
    more » « less
  3. The extremely high data rates provided by communications in the millimeter-length (mmWave) frequency bands can help address the unprecedented demands of next-generation wireless communications. However, atmospheric attenuation and high propagation loss severely limit the coverage of mmWave networks. To overcome these challenges, multi-input-multi-output (MIMO) provides beamforming capabilities and high-gain steer- able antennas to expand communication coverage at mmWave frequencies. The main contribution of this paper is the per- formance evaluation of mmWave communications on top of the recently released NR standard for 5G cellular networks. Furthermore, we compare the performance of NR with the 4G long-term evolution (LTE) standard on a highly realistic campus environment. We consider physical layer constraints such as transmit power, ambient noise, receiver noise figure, and practical antenna gain in both cases, and examine bitrate and area coverage as the criteria to benchmark the performance. We also show the impact of MIMO technology to improve the performance of the 5G NR cellular network. Our evaluation demonstrates that 5G NR provides on average 6.7 times bitrate improvement without remarkable coverage degradation. 
    more » « less
  4. The proliferation of IoT devices, with various capabilities in sensing, monitoring, and controlling, has prompted diverse emerging applications, highly relying on effective delivery of sensitive information gathered at edge devices to remote controllers for timely responses. To effectively deliver such information/status updates, this paper undertakes a holistic study of AoI in multi-hop networks by considering the relevant and realistic factors, aiming for optimizing information freshness by rapidly shipping sensitive updates captured at a source to its destination. In particular, we consider the multi-channel with OFDM (orthogonal frequency-division multiplexing) spectrum access in multi-hop networks and develop a rigorous mathematical model to optimize AoI at destination nodes. Real-world factors, including orthogonal channel access, wireless interference, and queuing model, are taken into account for the very first time to explore their impacts on the AoI. To this end, we propose two effective algorithms where the first one approximates the optimal solution as closely as we desire while the second one has polynomial time complexity, with a guaranteed performance gap to the optimal solution. The developed model and algorithms enable in-depth studies on AoI optimization problems in OFDM-based multi-hop wireless networks. Numerical results demonstrate that our solutions enjoy better AoI performance and that AoI is affected markedly by those realistic factors taken into our consideration. 
    more » « less
  5. Joint communications and sensing (JCAS) is envisioned as a key feature in future wireless communications networks. In massive MIMO-JCAS systems, the very large number of antennas causes excessively high computational complexity in beamforming designs. In this work, we investigate a low-complexity massive multiple-input-multiple-output (MIMO)-JCAS system employing the maximum-ratio transmission (MRT) scheme for both communications and sensing. We first derive closed-form expressions for the achievable communications rate and Cram´er–Rao bound (CRB) as functions of the large-scale fading channel coefficients. Then, we develop a power allocation strategy based on successive convex approximation to maximize the communications sum rate while guaranteeing the CRB constraint and transmit power budget. Our analysis shows that the introduction of sensing functionality increases the beamforming uncertainty and inter-user interference on the communications side. However, these factors can be mitigated by deploying a very large number of antennas. The numerical results verify our findings and demonstrate the power allocation efficiency. 
    more » « less