skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Time-Varying Linear Quadratic Gaussian Optimal Control for Three-Degree-of-Freedom Wave Energy Converters
The model of a three-degree-of-freedom Wave Energy Converter can be simplified as a linear time-varying system. In this model, the heave mode parametrically excites the pitch mode, which in turn excites the surge mode. The heave mode, however, is independent to the other two modes when the motion is small. The purpose of this paper is to design a controller to maximize the energy harvested over a receding time horizon. We also want to demonstrate that, with proper design of the control, it is possible to exploit this nonlinear coupling between the modes so as to harvest more energy. The controller selected is the linear quadratic Gaussian optimal control. The prediction of excitation forces is constructed based on the estimation where the estimations are obtained by using extended Kalman Filter. The prediction of excitation force is fed into the controller to compute the time-varying linear quadratic optimal control. Constraints on the WEC motion are accounted for in computing the control. The results show that the energy captured by three-degree-of-freedom Wave Energy Converter is 3:56 times the energy extracted in heave mode only. Higher energy harvesting is demonstrated when the linear time-varying model is used in control design.  more » « less
Award ID(s):
1635362
PAR ID:
10059763
Author(s) / Creator(s):
Date Published:
Journal Name:
European Wave and Tidal Energy Conference 2017
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper introduces a simulation framework and a corresponding Robust Optimal Control (ROC) for docking Unmanned Underwater Vehicles (UUVs) that leverages Marine Renewable Energy (MRE) for improved autonomy in docking and charging operations. The proposed simulation framework integrates the dynamics of the Wave Energy Converter (WEC), docking station, and UUV within a unified system. Utilizing the WEC-Sim for the hydrodynamic modeling and MoorDyn for mooring dynamics, and in-house UUV dynamics in Simulink, the simulation effectively accounts for complex interactions under dynamic ocean conditions. The ROC docking controller, consisting of a Linear Quadratic Regulator (LQR) and a Sliding Mode Control (SMC), is designed to enhance robustness against environmental disturbances and system uncertainties. This controller utilizes input-output linearization to transform the nonlinear dynamics into a manageable linear form, optimizing docking performance while compensating for disturbances and uncertainties. The combined simulation and control approach is validated under various ocean conditions, demonstrating effective docking precision and energy efficiency. This work lays a foundational platform for future advancements in autonomous marine operations for UUV docking systems integrated with WEC. In addition, this work also demonstrates the feasibility of using MRE to significantly extend the operational duration of UUVs; such a platform will be leveraged for further development of structural health monitoring and fault diagnosis techniques for offshore structures such as WECs and Floating Offshore Wind Turbines. 
    more » « less
  2. With the increasing penetration of non-synchronous variable renewable energy sources (RES) in power grids, the system's inertia decreases and varies over time, affecting the capability of current control schemes to handle frequency regulation. Providing virtual inertia to power systems has become an interesting topic of research, since it may provide a reasonable solution to address this new issue. However, power dynamics are usually modeled as time-invariant, without including the effect of varying inertia due to the presence of RES. This paper presents a framework to design a fixed learned controller based on datasets of optimal time-varying LQR controllers. In our scheme, we model power dynamics as a hybrid system with discrete modes representing different rotational inertia regimes of the grid. We test the performance of our controller in a twelve-bus system using different fixed inertia modes. We also study our learned controller as the inertia changes over time. By adding virtual inertia we can guarantee stability of high-renewable (low-inertia) modes. The novelty of our work is to propose a design framework for a stable controller with fixed gains for time-varying power dynamics. This is relevant because it would be simpler to implement a proportional controller with fixed gains compared to a time-varying control. 
    more » « less
  3. A power take-off based on the inerter pendulum vibration absorber (called IPVA-PTO) is integrated with a spar-floater system to study its hydrodynamic response suppression and wave energy conversion capabilities in regular waves. The hydrodynamics of the spar-floater system is computed using the boundary element method with linear wave theory. With the wave height and wave frequency as the bifurcation parameters, it is found that the system can undergo two bifurcations: period-doubling bifurcation around the first resonance frequency (spar mode) and secondary Hopf bifurcation around the second resonance frequency (floater mode). The period-doubling bifurcation results in an energy transfer between the spar-floater system and the IPVA-PTO for small electrical damping values. As a result, the IPVA-PTO system simultaneously reduces the maximum response amplitude operator (RAO) of the spar and increases the normalized capture width in comparison with the optimal linear benchmark. Experiments performed on a ‘‘dry’’ single-degree-of-freedom system integrated with the IPVAPTO where the base excitation is substituted for the wave excitation verify the simultaneous performance enhancement due to the period-doubling bifurcation. The system performance beyond the period-doubling bifurcation is also experimentally investigated. On the other hand, as the wave height approaches and passes the secondary Hopf bifurcation, the pendulum responses transition from primary harmonic responses to quasi-periodic responses to rotations. When the rotations occur, the IPVA-PTO system increases the maximum normalized capture width threefold to fivefold compared with the optimal linear benchmark, yet slightly increases the RAO around the second resonance frequency. Nevertheless, the RAO remains smaller than the global maximum RAO of the optimal linear benchmark. Finally, parametric studies are performed to study the effects of parameters on the bifurcations. It is observed that by varying the electrical damping, the wave height required for achieving the period-doubling bifurcation can be changed significantly, which can be exploited to stabilize the spar. 
    more » « less
  4. This paper derives a control law within the context of optimal control theory for a heaving wave energy converter (WEC) and presents its implementation procedure. The proposed control assumes the availability of measurements of pressure distribution on the buoy surface, buoy position, and buoy velocity. This control has two main characteristics. First, this control is derived based on a simple dynamic model. The forces on the WEC are modeled as one total force, and hence there is no need to compute excitation or radiation forces. Second, this control can be applied to both linear and nonlinear WEC systems. The derived control law is optimal, yet its implementation requires estimation of some force derivatives which render the obtained control force sub-optimal. Numerical testing demonstrates in this paper that the proposed simple model control can achieve levels of harvested energy close to the maximum theoretical limit predicted by singular arc control in the case of linear WEC systems. 
    more » « less
  5. Abstract Agriculture provides a large amount of the world’s fish supply. Remote ocean farms need electric power, but most of them are not covered by the electric power grid. Ocean wave energy has the potential to provide power and enable fully autonomous farms. However, the lack of solid mounting structure makes it very challenging to harvest ocean power efficiently; the small-scale application makes high-efficiency conversion hard to achieve. To address these issues, we proposed a self-reactive ocean wave converter (WEC) and winch-based Power Take-Off (PTO) to enable a decent capture width ratio (CWR) and high power conversion efficiency. Two flaps are installed on a fish feed buoy and can move along linear guides. Ocean wave in both heave and surge directions drive the flaps to move and hence both wave potential energy and wave kinetic energy are harvested. The motion is transmitted by a winch to rotation motion to drive an electric generator, and power is harvested. Dynamic modeling is done by considering the harvester structure, the added mass, the damping, and the excitation force from ocean wave. The proposed WEC is simulated in ANSYS AQWA with excitations from regular wave and results in a gross CWR of 13%. A 1:3.5 scaled-down PTO is designed and prototyped. Bench-top experiment with Instron is done and the results show that the mechanical efficiency can reach up to 83% and has potential for real applications. 
    more » « less