skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Near-linear time approximation algorithms for optimal transport via Sinkhorn iteration
Computing optimal transport distances such as the earth mover's distance is a fundamental problem in machine learning, statistics, and computer vision. Despite the recent introduction of several algorithms with good empirical performance, it is unknown whether general optimal transport distances can be approximated in near-linear time. This paper demonstrates that this ambitious goal is in fact achieved by Cuturi's Sinkhorn Distances. This result relies on a new analysis of Sinkhorn iterations, which also directly suggests a new greedy coordinate descent algorithm Greenkhorn with the same theoretical guarantees. Numerical simulations illustrate that Greenkhorn significantly outperforms the classical Sinkhorn algorithm in practice.  more » « less
Award ID(s):
1712596 1740751
PAR ID:
10059910
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Nips
Volume:
30
ISSN:
1365-8875
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Jonathan Berry, David Shmoys (Ed.)
    n 2013, Cuturi [9] introduced the SINKHORN algorithm for matrix scaling as a method to compute solutions to regularized optimal transport problems. In this paper, aiming at a better convergence rate for a high accuracy solution, we work on understanding the SINKHORN algorithm under regularization scheduling, and thus modify it with a mechanism that adaptively doubles the regularization parameter η periodically. We prove that such modified version of SINKHORN has an exponential convergence rate as iteration complexity depending on log(l/ɛ) instead of ɛ-o(1) from previous analyses [1, 9] in the optimal transport problems with integral supply and demand. Furthermore, with cost and capacity scaling procedures, the general optimal transport problem can be solved with a logarithmic dependence on 1/ɛ as well. 
    more » « less
  2. Wasserstein distance plays increasingly important roles in machine learning, stochastic programming and image processing. Major efforts have been under way to address its high computational complexity, some leading to approximate or regularized variations such as Sinkhorn distance. However, as we will demonstrate, regularized variations with large regularization parameter will degradate the performance in several important machine learning applications, and small regularization parameter will fail due to numerical stability issues with existing algorithms. We address this challenge by developing an Inexact Proximal point method for exact Optimal Transport problem (IPOT) with the proximal operator approximately evaluated at each iteration using projections to the probability simplex. The algorithm (a) converges to exact Wasserstein distance with theoretical guarantee and robust regularization parameter selection, (b) alleviates numerical stability issue, (c) has similar computational complexity to Sinkhorn, and (d) avoids the shrinking problem when apply to generative models. Furthermore, a new algorithm is proposed based on IPOT to obtain sharper Wasserstein barycenter. 
    more » « less
  3. The classical static Schrödinger Bridge (SSB) problem, which seeks the most likely stochastic evolution between two marginal probability measures, has been studied extensively in the optimal transport and statistical physics communities, and more recently in machine learning communities in the surge of generative models. The standard approach to solve SSB is to first identify its Kantorovich dual and use Sinkhorn's algorithm to find the optimal potential functions. While the original SSB is only a strictly convex minimization problem, this approach is known to warrant linear convergence under mild assumptions. In this work, we consider a generalized SSB allowing any strictly increasing divergence functional, far generalizing the entropy functional x log(x) in the standard SSB. This problem naturally arises in a wide range of seemingly unrelated problems in entropic optimal transport, random graphs/matrices, and combinatorics. We establish Kantorovich duality and linear convergence of Sinkhorn's algorithm for the generalized SSB problem under mild conditions. Our results provide a new rigorous foundation for understanding Sinkhorn-type iterative methods in the context of large-scale generalized Schrödinger bridges. 
    more » « less
  4. In this work, we develop a new framework for dynamic network flow problems based on optimal transport theory. We show that the dynamic multicommodity minimum-cost network flow problem can be formulated as a multimarginal optimal transport problem, where the cost function and the constraints on the marginals are associated with a graph structure. By exploiting these structures and building on recent advances in optimal transport theory, we develop an efficient method for such entropy-regularized optimal transport problems. In particular, the graph structure is utilized to efficiently compute the projections needed in the corresponding Sinkhorn iterations, and we arrive at a scheme that is both highly computationally efficient and easy to implement. To illustrate the performance of our algorithm, we compare it with a state-of-the-art linear programming (LP) solver. We achieve good approximations to the solution at least one order of magnitude faster than the LP solver. Finally, we showcase the methodology on a traffic routing problem with a large number of commodities. Funding: This work was supported by KTH Digital Futures, Knut och Alice Wallenbergs Stiftelse [Grants KAW 2018.0349, KAW 2021.0274, the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation], Vetenskapsrådet [Grant 2020-03454], and the National Science Foundation [Grants 1942523 and 2206576]. 
    more » « less
  5. Transportation cost is an attractive similarity measure between probability distributions due to its many useful theoretical properties. However, solving optimal transport exactly can be prohibitively expensive. Therefore, there has been significant effort towards the design of scalable approximation algorithms. Previous combinatorial results [Sharathkumar, Agarwal STOC '12, Agarwal, Sharathkumar STOC '14] have focused primarily on the design of near-linear time multiplicative approximation algorithms. There has also been an effort to design approximate solutions with additive errors [Cuturi NIPS '13, Altschuler \etal\ NIPS '17, Dvurechensky \etal\, ICML '18, Quanrud, SOSA '19] within a time bound that is linear in the size of the cost matrix and polynomial in C/\delta; here C is the largest value in the cost matrix and \delta is the additive error. We present an adaptation of the classical graph algorithm of Gabow and Tarjan and provide a novel analysis of this algorithm that bounds its execution time by \BigO(\frac{n^2 C}{\delta}+ \frac{nC^2}{\delta^2}). Our algorithm is extremely simple and executes, for an arbitrarily small constant \eps, only \lfloor \frac{2C}{(1-\eps)\delta}\rfloor + 1 iterations, where each iteration consists only of a Dijkstra-type search followed by a depth-first search. We also provide empirical results that suggest our algorithm is competitive with respect to a sequential implementation of the Sinkhorn algorithm in execution time. Moreover, our algorithm quickly computes a solution for very small values of \delta whereas Sinkhorn algorithm slows down due to numerical instability. 
    more » « less