In this paper, we present the development of a "reconstruction kit" for e-textiles, which transforms fixed-state construction kits---maker tools and technologies that focus on the creation of semi-permanent projects---into flex-state construction kits that allow for endless deconstruction and reconstruction. The kit uses modular pieces that allow students to both solve and create troubleshooting and debugging challenges, which we call "DebugIts." We tested our prototype in an after-school workshop with ten high school students, and report on how they interacted with the kit, as well as what they learned through the DebugIt activities. In the discussion, we delve into the affordances and challenges of using these kits as both learning and assessment tools. We also discuss how our pilot and prototype can inform the design of reconstruction kits in other areas of making.
more »
« less
Learning by Fixing and Designing Problems: A Reconstruction Kit for Debugging E-Textiles
In this paper, we present the development of a "reconstruction kit" for e-textiles, which transforms fixed-state construction kits---maker tools and technologies that focus on the creation of semi-permanent projects---into flex-state construction kits that allow for endless deconstruction and reconstruction. The kit uses modular pieces that allow students to both solve and create troubleshooting and debugging challenges, which we call "DebugIts." We tested our prototype in an after-school workshop with ten high school students, and report on how they interacted with the kit, as well as what they learned through the DebugIt activities. In the discussion, we delve into the affordances and challenges of using these kits as both learning and assessment tools. We also discuss how our pilot and prototype can inform the design of reconstruction kits in other areas of making.
more »
« less
- Award ID(s):
- 1742140
- PAR ID:
- 10061545
- Date Published:
- Journal Name:
- FabLearn '17 Proceedings of the 7th Annual Conference on Creativity and Fabrication in Education
- Page Range / eLocation ID:
- 1 to 8
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper, we present an iteration on a “reconstruction kit” for e-textiles, a flexible-state construction kit that allows for rapid deconstruction and reconstruction of sewn, programmable circuits. The reconstruction kit was redesigned to be more modular and was tested in more computationally and spatially challenging debugging and design situations. by four pairs of˛ students familiar with e-textiles taking an introductory computer science course in a U.S. high school. Analyzing think-aloud protocols of the four sessions, we examined affordances and limitations of how student debugged and designed with the reconstruction kit and in which ways collaborative interactions were supported.more » « less
-
Wearable construction toolkits have shown promise in broadening participation in computing and empowering users to create personally meaningful computational designs. However, these kits present a high barrier of entry for some users, particularly young children (K-6). In this paper, we introduce MakerWear, a new wearable construction kit for children that uses a tangible, modular approach to wearable creation. We describe our participatory design process, the iterative development of MakerWear, and results from single- and multi-session workshops with 32 children (ages 5-12; M=8.3 years). Our findings reveal how children engage in wearable design, what they make (and want to make), and what challenges they face. As a secondary analysis, we also explore age-related differences.more » « less
-
In this paper, we explore how standards-based Making activities offer opportunities for teachers to address interdisciplinary concepts and encourage students to tinker, collaborate, create, and design. This qualitative study draws on results from a two-year, NSF-funded research project that involved the integration of standards-based Mobile Maker Kits into 15 elementary schools within a suburban-rural Southern school district. Specifically, we examine teachers’ goals for using Mobile Maker Kits, as well as how the hook, brainstorm, prototype, share, synthesize framework supported them in integrating Making into their existing standards and curricula.more » « less
-
Science kits have been a staple of learning for some time, but in the era of COVID-19 at-home science kits took specific prominence in educational initiatives. In this paper, we delineate how kit-based education can be paired with virtual connection technology to enhance postsecondary and career exploration. The “Content, Connection and Careers” kit-based program has been developed to enable youth to explore electrical engineering principles while connecting virtually with university students to discuss engineering courses and careers. When assembled and wired up, the kit components become linear motors that use a magnetic force to pull a bolt into a pipe when youth press a button. This follows the same working principles as a doorbell or solenoid. These kits are supported by virtual learning sessions where youth connect with university students and faculty to fully understand the educational content, connect to peers and caring adults to share their learning, and explore careers that use electrical engineering skills. To investigate the effectiveness of the program, surveys were distributed to participants to understand whether the kits were simple enough for independent learning but robust enough to encourage additional self-exploration of more difficult topics with the aid of expert scientists and other adult role models. Additionally, youth were asked if the connections made with university faculty and students was beneficial in their thinking of postsecondary options and college engagement. Over 60 elementary and middle-school aged youth participated in the project. Over 80 percent of survey respondents self-reported improved knowledge of how an electromagnetic field works and how to build a simple electromagnet. Other results showed an increased understanding of engineering careers and courses required to study electric engineering in college. Before their experience in the project, very few of the young people had ever talked to university faculty or university students about their areas of research or their journey into the fields of science, technology, engineering, and math (STEM). This connection was described in the surveys as what the youth liked best about the project.more » « less
An official website of the United States government

