skip to main content


Title: Curriculum Learning for Heterogeneous Star Network Embedding via Deep Reinforcement Learning
Learning node representations for networks has attracted much attention recently due to its effectiveness in a variety of applications. This paper focuses on learning node representations for heterogeneous star networks, which have a center node type linked with multiple attribute node types through different types of edges. In heterogeneous star networks, we observe that the training order of different types of edges affects the learning performance signiffcantly. Therefore we study learning curricula for node representation learning in heterogeneous star networks, i.e., learning an optimal sequence of edges of different types for the node representation learning process. We formulate the problem as a Markov decision process, with the action as selecting a speciffc type of edges for learning or terminating the training process, and the state as the sequence of edge types selected so far. The reward is calculated as the performance on external tasks with node representations as features, and the goal is to take a series of actions to maximize the cumulative rewards. We propose an approach based on deep reinforcement learning for this problem. Our approach leverages LSTM models to encode states and further estimate the expected cumulative reward of each state-action pair, which essentially measures the long-term performance of different actions at each state. Experimental results on real-world heterogeneous star networks demonstrate the effectiveness and effciency of our approach over competitive baseline approaches.  more » « less
Award ID(s):
1704532 1618481 1741317
NSF-PAR ID:
10062049
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the Eleventh {ACM} International Conference on Web Search and Data Mining, {WSDM} 2018,
Volume:
11
Issue:
1
Page Range / eLocation ID:
468 to 476
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Proc. 2023 ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (Ed.)
    Representation learning on networks aims to derive a meaningful vector representation for each node, thereby facilitating downstream tasks such as link prediction, node classification, and node clustering. In heterogeneous text-rich networks, this task is more challenging due to (1) presence or absence of text: Some nodes are associated with rich textual information, while others are not; (2) diversity of types: Nodes and edges of multiple types form a heterogeneous network structure. As pretrained language models (PLMs) have demonstrated their effectiveness in obtaining widely generalizable text representations, a substantial amount of effort has been made to incorporate PLMs into representation learning on text-rich networks. However, few of them can jointly consider heterogeneous structure (network) information as well as rich textual semantic information of each node effectively. In this paper, we propose Heterformer, a Heterogeneous Network-Empowered Transformer that performs contextualized text encoding and heterogeneous structure encoding in a unified model. Specifically, we inject heterogeneous structure information into each Transformer layer when encoding node texts. Meanwhile, Heterformer is capable of characterizing node/edge type heterogeneity and encoding nodes with or without texts. We conduct comprehensive experiments on three tasks (i.e., link prediction, node classification, and node clustering) on three large-scale datasets from different domains, where Heterformer outperforms competitive baselines significantly and consistently. 
    more » « less
  2. Constrained action-based decision-making is one of the most challenging decision-making problems. It refers to a scenario where an agent takes action in an environment not only to maximize the expected cumulative reward but where it is subject to certain actionbased constraints; for example, an upper limit on the total number of certain actions being carried out. In this work, we construct a general data-driven framework called Constrained Action-based Partially Observable Markov Decision Process (CAPOMDP) to induce effective pedagogical policies. Specifically, we induce two types of policies: CAPOMDP-LG using learning gain as reward with the goal of improving students’ learning performance, and CAPOMDP-Time using time as reward for reducing students’ time on task. The effectiveness ofCAPOMDP-LG is compared against a random yet reasonable policy and the effectiveness of CAPOMDP-Time is compared against both a Deep Reinforcement Learning induced policy and a random policy. Empirical results show that there is an Aptitude Treatment Interaction effect: students are split into High vs. Low based on their incoming competence; while no significant difference is found among the High incoming competence groups, for the Low groups, students following CAPOMDP-Time indeed spent significantly less time than those using the two baseline policies and students following CAPOMDP-LG significantly outperform their peers on both learning gain and learning efficiency. 
    more » « less
  3. Attributed network embedding aims to learn lowdimensional vector representations for nodes in a network, where each node contains rich attributes/features describing node content. Because network topology structure and node attributes often exhibit high correlation, incorporating node attribute proximity into network embedding is beneficial for learning good vector representations. In reality, large-scale networks often have incomplete/missing node content or linkages, yet existing attributed network embedding algorithms all operate under the assumption that networks are complete. Thus, their performance is vulnerable to missing data and suffers from poor scalability. In this paper, we propose a Scalable Incomplete Network Embedding (SINE) algorithm for learning node representations from incomplete graphs. SINE formulates a probabilistic learning framework that separately models pairs of node-context and node-attribute relationships. Different from existing attributed network embedding algorithms, SINE provides greater flexibility to make the best of useful information and mitigate negative effects of missing information on representation learning. A stochastic gradient descent based online algorithm is derived to learn node representations, allowing SINE to scale up to large-scale networks with high learning efficiency. We evaluate the effectiveness and efficiency of SINE through extensive experiments on real-world networks. Experimental results confirm that SINE outperforms state-of-the-art baselines in various tasks, including node classification, node clustering, and link prediction, under settings with missing links and node attributes. SINE is also shown to be scalable and efficient on large-scale networks with millions of nodes/edges and high-dimensional node features. 
    more » « less
  4. Computing similarity between graphs is a fundamental and critical problem in graph-based applications, and one of the most commonly used graph similarity measures is graph edit distance (GED), defined as the minimum number of graph edit operations that transform one graph to another. Existing GED solutions suffer from severe performance issues due in particular to the NP-hardness of exact GED computation. Recently, deep learning has shown early promise for GED approximation with high accuracy and low computational cost. However, existing methods treat GED as a global, coarse-grained graph similarity value, while neglecting the type-specific transformative impacts incurred by different types of graph edit operations, including node insertion/deletion, node relabeling, edge insertion/deletion, and edge relabeling. In this paper, we propose a type-aware graph similarity learning and computation framework, TaGSim (T ype -a ware G raph Sim ilarity), that estimates GED in a fine-grained approach w.r.t. different graph edit types. Specifically, for each type of graph edit operations, TaGSim models its unique transformative impacts upon graphs, and encodes them into high-quality, type-aware graph embeddings, which are further fed into type-aware neural networks for accurate GED estimation. Extensive experiments on five real-world datasets demonstrate the effectiveness and efficiency of TaGSim, which significantly outperforms state-of-the-art GED solutions. 
    more » « less
  5. The main objective of Personalized Tour Recommendation (PTR) is to generate a sequence of point-of-interest (POIs) for a particular tourist, according to the user-specific constraints such as duration time, start and end points, the number of attractions planned to visit, and so on. Previous PTR solutions are based on either heuristics for solving the orienteering problem to maximize a global reward with a specified budget or approaches attempting to learn user visiting preferences and transition patterns with the stochastic process or recurrent neural networks. However, existing learning methodologies rely on historical trips to train the model and use the next visited POI as the supervised signal, which may not fully capture the coherence of preferences and thus recommend similar trips to different users, primarily due to the data sparsity problem and long-tailed distribution of POI popularity. This work presents a novel tour recommendation model by distilling knowledge and supervision signals from the trips in a self-supervised manner. We propose Contrastive Trajectory Learning for Tour Recommendation (CTLTR), which utilizes the intrinsic POI dependencies and traveling intent to discover extra knowledge and augments the sparse data via pre-training auxiliary self-supervised objectives. CTLTR provides a principled way to characterize the inherent data correlations while tackling the implicit feedback and weak supervision problems by learning robust representations applicable for tour planning. We introduce a hierarchical recurrent encoder-decoder to identify tourists’ intentions and use the contrastive loss to discover subsequence semantics and their sequential patterns through maximizing the mutual information. Additionally, we observe that a data augmentation step as the preliminary of contrastive learning can solve the overfitting issue resulting from data sparsity. We conduct extensive experiments on a range of real-world datasets and demonstrate that our model can significantly improve the recommendation performance over the state-of-the-art baselines in terms of both recommendation accuracy and visiting orders. 
    more » « less