skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Curriculum Learning for Heterogeneous Star Network Embedding via Deep Reinforcement Learning
Learning node representations for networks has attracted much attention recently due to its effectiveness in a variety of applications. This paper focuses on learning node representations for heterogeneous star networks, which have a center node type linked with multiple attribute node types through different types of edges. In heterogeneous star networks, we observe that the training order of different types of edges affects the learning performance signiffcantly. Therefore we study learning curricula for node representation learning in heterogeneous star networks, i.e., learning an optimal sequence of edges of different types for the node representation learning process. We formulate the problem as a Markov decision process, with the action as selecting a speciffc type of edges for learning or terminating the training process, and the state as the sequence of edge types selected so far. The reward is calculated as the performance on external tasks with node representations as features, and the goal is to take a series of actions to maximize the cumulative rewards. We propose an approach based on deep reinforcement learning for this problem. Our approach leverages LSTM models to encode states and further estimate the expected cumulative reward of each state-action pair, which essentially measures the long-term performance of different actions at each state. Experimental results on real-world heterogeneous star networks demonstrate the effectiveness and effciency of our approach over competitive baseline approaches.  more » « less
Award ID(s):
1704532 1618481 1741317
PAR ID:
10062049
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the Eleventh {ACM} International Conference on Web Search and Data Mining, {WSDM} 2018,
Volume:
11
Issue:
1
Page Range / eLocation ID:
468 to 476
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Proc. 2023 ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (Ed.)
    Representation learning on networks aims to derive a meaningful vector representation for each node, thereby facilitating downstream tasks such as link prediction, node classification, and node clustering. In heterogeneous text-rich networks, this task is more challenging due to (1) presence or absence of text: Some nodes are associated with rich textual information, while others are not; (2) diversity of types: Nodes and edges of multiple types form a heterogeneous network structure. As pretrained language models (PLMs) have demonstrated their effectiveness in obtaining widely generalizable text representations, a substantial amount of effort has been made to incorporate PLMs into representation learning on text-rich networks. However, few of them can jointly consider heterogeneous structure (network) information as well as rich textual semantic information of each node effectively. In this paper, we propose Heterformer, a Heterogeneous Network-Empowered Transformer that performs contextualized text encoding and heterogeneous structure encoding in a unified model. Specifically, we inject heterogeneous structure information into each Transformer layer when encoding node texts. Meanwhile, Heterformer is capable of characterizing node/edge type heterogeneity and encoding nodes with or without texts. We conduct comprehensive experiments on three tasks (i.e., link prediction, node classification, and node clustering) on three large-scale datasets from different domains, where Heterformer outperforms competitive baselines significantly and consistently. 
    more » « less
  2. Edges in many real-world social/information networks are associated with rich text information (e.g., user-user communications or user-product reviews). However, mainstream network representation learning models focus on propagating and aggregating node attributes, lacking specific designs to utilize text semantics on edges. While there exist edge-aware graph neural networks, they directly initialize edge attributes as a feature vector, which cannot fully capture the contextualized text semantics of edges. In this paper, we propose Edgeformers, a framework built upon graph-enhanced Transformers, to perform edge and node representation learning by modeling texts on edges in a contextualized way. Specifically, in edge representation learning, we inject network information into each Transformer layer when encoding edge texts; in node representation learning, we aggregate edge representations through an attention mechanism within each node’s ego-graph. On five public datasets from three different domains, Edgeformers consistently outperform state-of-the-art baselines in edge classification and link prediction, demonstrating the efficacy in learning edge and node representations, respectively. 
    more » « less
  3. Attributed network embedding aims to learn lowdimensional vector representations for nodes in a network, where each node contains rich attributes/features describing node content. Because network topology structure and node attributes often exhibit high correlation, incorporating node attribute proximity into network embedding is beneficial for learning good vector representations. In reality, large-scale networks often have incomplete/missing node content or linkages, yet existing attributed network embedding algorithms all operate under the assumption that networks are complete. Thus, their performance is vulnerable to missing data and suffers from poor scalability. In this paper, we propose a Scalable Incomplete Network Embedding (SINE) algorithm for learning node representations from incomplete graphs. SINE formulates a probabilistic learning framework that separately models pairs of node-context and node-attribute relationships. Different from existing attributed network embedding algorithms, SINE provides greater flexibility to make the best of useful information and mitigate negative effects of missing information on representation learning. A stochastic gradient descent based online algorithm is derived to learn node representations, allowing SINE to scale up to large-scale networks with high learning efficiency. We evaluate the effectiveness and efficiency of SINE through extensive experiments on real-world networks. Experimental results confirm that SINE outperforms state-of-the-art baselines in various tasks, including node classification, node clustering, and link prediction, under settings with missing links and node attributes. SINE is also shown to be scalable and efficient on large-scale networks with millions of nodes/edges and high-dimensional node features. 
    more » « less
  4. Constrained action-based decision-making is one of the most challenging decision-making problems. It refers to a scenario where an agent takes action in an environment not only to maximize the expected cumulative reward but where it is subject to certain actionbased constraints; for example, an upper limit on the total number of certain actions being carried out. In this work, we construct a general data-driven framework called Constrained Action-based Partially Observable Markov Decision Process (CAPOMDP) to induce effective pedagogical policies. Specifically, we induce two types of policies: CAPOMDP-LG using learning gain as reward with the goal of improving students’ learning performance, and CAPOMDP-Time using time as reward for reducing students’ time on task. The effectiveness ofCAPOMDP-LG is compared against a random yet reasonable policy and the effectiveness of CAPOMDP-Time is compared against both a Deep Reinforcement Learning induced policy and a random policy. Empirical results show that there is an Aptitude Treatment Interaction effect: students are split into High vs. Low based on their incoming competence; while no significant difference is found among the High incoming competence groups, for the Low groups, students following CAPOMDP-Time indeed spent significantly less time than those using the two baseline policies and students following CAPOMDP-LG significantly outperform their peers on both learning gain and learning efficiency. 
    more » « less
  5. Human activities often occur in specific scene contexts, e.g. playing basketball on a basketball court. Training a model using existing video datasets thus inevitably captures and leverages such bias (instead of using the actual discriminative cues). The learned representation may not generalize well to new action classes or different tasks. In this paper, we propose to mitigate scene bias for video representation learning. Specifically, we augment the standard cross-entropy loss for action classification with 1) an adversarial loss for scene types and 2) a human mask confusion loss for videos where the human actors are masked out. These two losses encourage learning representations that are unable to predict the scene types and the correct actions when there is no evidence. We validate the effectiveness of our method by transferring our pre-trained model to three different tasks, including action classification, temporal localization, and spatio-temporal action detection. Our results show consistent improvement over the baseline model without debiasing. 
    more » « less