The role of particle shape in evaporation-induced auto-stratification in polydisperse colloidal suspensions is explored with molecular dynamics simulations of mixtures of spheres and aspherical particles. A unified framework based on the competition between diffusion and diffusiophoresis is proposed to understand the effects of shape and size dispersity. In general, particles diffusing more slowly (e.g., larger particles) tend to accumulate more strongly at the evaporation front. However, larger particles have larger surface areas and therefore greater diffusiophoretic mobility. Hence, they are more likely to be driven away from the evaporation front via diffusiophoresis. For a rapidly dried bidisperse suspension containing small and large spheres, the competition leads to “small-on-top” stratification. Here, we employ a computational model in which the diffusion coefficient is inversely proportional to particle mass. For a mixture of spheres and aspherical particles with similar mass, the diffusion contrast is reduced, and the spheres are always enriched at the evaporation front as they have the smallest surface area for a given mass and, therefore, the lowest diffusiophoretic mobility. For a mixture of solid and hollow spheres that have the same outer radius and thus the same surface area, the diffusiophoretic contrast is suppressed, and the system is dominated by diffusion. Consequently, the solid spheres, which have a larger mass and diffuse more slowly, accumulate on top of the hollow spheres. Finally, for a mixture of thin disks and long rods that differ significantly in shape but have similar mass and surface area, both diffusion and diffusiophoresis contrasts are suppressed, and the mixture does not stratify.
more »
« less
Generalized Access to Mesoporous Inorganic Particles and Hollow Spheres from Multicomponent Polymer Blends
Abstract Mesoporous inorganic particles and hollow spheres are of increasing interest for a broad range of applications, but synthesis approaches are typically material specific, complex, or lack control over desired structures. Here it is reported how combining mesoscale block copolymer (BCP) directed inorganic materials self‐assembly and macroscale spinodal decomposition can be employed in multicomponent BCP/hydrophilic inorganic precursor blends with homopolymers to prepare mesoporous inorganic particles with controlled meso‐ and macrostructures. The homogeneous multicomponent blend solution undergoes dual phase separation upon solvent evaporation. Microphase‐separated (BCP/inorganic precursor)‐domains are confined within the macrophase‐separated majority homopolymer matrix, being self‐organized toward particle shapes that minimize the total interfacial area/energy. The pore orientation and particle shape (solid spheres, oblate ellipsoids, hollow spheres) are tailored by changing the kind of homopolymer matrix and associated enthalpic interactions. Furthermore, the sizes of particle and hollow inner cavity are tailored by changing the relative amount of homopolymer matrix and the rates of solvent evaporation. Pyrolysis yields discrete mesoporous inorganic particles and hollow spheres. The present approach enables a high degree of control over pore structure, orientation, and size (15–44 nm), particle shape, particle size (0.6–3 µm), inner cavity size (120–700 nm), and chemical composition (e.g., aluminosilicates, carbon, and metal oxides).
more »
« less
- Award ID(s):
- 1707836
- PAR ID:
- 10062560
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials
- Volume:
- 30
- Issue:
- 27
- ISSN:
- 0935-9648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Materials combining an asymmetric pore structure with mesopores everywhere enable high surface area accessibility and fast transport, making them attractive for e.g., energy conversion and storage applications. Block copolymer (BCP)/inorganic precursor co‐assembly combined with non‐solvent induced phase separation (NIPS) provides a route to materials in which a mesoporous top surface layer merges into an asymmetric support with graded porosity along the film normal and mesopores throughout. Here, the co‐assembly and non‐solvent‐induced phase separation (CNIPS) of poly(isoprene)‐b‐poly(styrene)‐b‐poly(4‐vinylpyridine) (ISV) triblock terpolymer and titanium dioxide (TiO2) sol‐gel nanoparticlesare reported. Heat‐treatment in air results in free‐standing asymmetric porous TiO2. Further thermal processing in ammonia results in free‐standing asymmetric porous titanium nitride (TiN). processing changes alter structural membrane characteristics is demonstrated. Changing the CNIPS evaporation time results in various membrane cross‐sections ( finger‐like to sponge‐like). Oxide and nitride material composition, crystallinity, and porosity are tuned by varying thermal processing conditions. Finally, thermal processing condition effects are probed on phase‐pure asymmetric nitride membrane behavior using cyclic voltammetry to elucidate their influence, e.g., on specific capacitance. Results provide further insights into improving asymmetric and porous materials for applications including energy conversion and storage, separation, and catalysis and motivate a further expansion of CNIPS to other (in)organic materials.more » « less
-
Abstract Surface segregation in blended polymer films has attracted much interest in fundamental research as well as for practical applications. A variety of methodologies have been proposed for controlling surface segregation. They often require long annealing times, however, to achieve thermodynamic equilibrium. Here, a strategy and proof‐of‐principle experiments are described to control surface segregation of thin block‐copolymer (BCP) layers on top of a homopolymer in a single casting step from blended BCP/homopolymer solutions. The surface coverage by the minor constituent BCP (2–10 wt%) is accomplished despite almost identical surface energies of BCP and homopolymer constituents. Immersing this casted solution into water for nonsolvent induced phase separation (NIPS), a nonequilibrium process, affords solidified bilayer ultrafiltration membranes composed of a thin porous surface layer of self‐assembled BCP atop an asymmetric porous homopolymer substructure. Key to successful BCP surface segregation is the choice of a binary solvent system based on careful considerations of solvent surface energies and polymer‐solvent interaction parameters. Furthermore, stabilizing the BCP micellar structure by a divalent metal additive is also essential. The approach provides a cost‐effective method for fabricating bilayer‐type asymmetric ultrafiltration membranes with uniform BCP self‐assembly based selective top surface pore layers in a single casting step.more » « less
-
The combination of precision control with wide tunability remains a challenge for the fabrication of porous nanomaterials suitable for studies of nanostructure–behavior relationships. Polymer micelle templates broadly enable porous materials, however micelle equilibration hampers independent pore and wall size control. Persistent micelle templates (PMT) have emerged as a kinetic controlled platform that uniquely decouples the control of pore and wall dimensions. Here, chain exchange is inhibited to preserve a constant template dimension (pore size) despite the shifting equilibrium while materials are added between micelles. Early PMT demonstrations were synthesis intensive with limited 1–1.3× pore size tuning for a given polymer. Here we demonstrate PMT swelling with homopolymer enables 1–3.2× (13.3–41.9 nm) pore size variation while maintaining a monomodal distribution with up to 250 wt% homopolymer, considerably higher than the ∼90 wt% limit found for equilibrating micelles. These swollen PMTs enabled nanomaterial series with constant pore size and precision varied wall-thickness. Kinetic size control here is unexpected since the homopolymer undergoes dynamic exchange between micelles. The solvent selection influenced the time window before homopolymer phase separation, highlighting the importance of considering homopolymer–solvent interactions. This is the first PMT demonstration with wide variation of both the pore and wall dimensions using a single block polymer. Lastly this approach was extended to a 72 kg mol −1 block polymer to enable a wide 50–290 nm range of tunable macropores. Here the use of just two different block polymers and one homopolymer enabled wide ranging pore sizes spanning from 13.3–290 nm (1–22×).more » « less
-
Several approaches have been made to synthesize inorganic hollow nanospheres. A dual-template system is the most effective method, usually using surfactants to form mesoporous shells and rigid templates to form interior hollow structures. However, the removal of rigid templates is time consuming and uneconomical. The self-assembly of soft-templates is more convenient and is able to directly construct hollow mesoporous nanoparticles. The soft-templating approach especially the micelles of amphiphilic block copolymers are very helpfulfor creating hollow interiors andporous shell. The hollow void and thickness of shell can be easily tuned by changing either molecular weight of polymer or solution properties. This review focuses on the synthesis of inorganic hollow nanospheres and their application in drug delivery. The large hollow void space with thorough porosity are always beneficial for drug loading and release.more » « less
An official website of the United States government
