skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Navigating Process-Product Tensions using a Design Canvas
National surveys of design courses find many similarities between the way capstone courses are structured and implemented, although more programs focus on the design process rather than creating a product. What is not as well understood are the methods and techniques used to inform students of interrelationship between product and process. This paper discusses the use of multiple formal design representations as a means to focus learning on the interrelation between design processes and products. The ability to utilize multiple representations has been demonstrated to be effective in improving student learning in math education, a discipline that can be highly process-oriented. Similarly representational fluency impacts engineering modeling. In the context of teaching design the term representation here refers to a written or graphical expression of some aspect of the design process and/or product. Ideally the set of representations would form a minimal and complete orthonormal basis set; that is the ensemble of representations captures the design in its entirety and the representations are not redundant. Since the design work of many engineers is a set of plans or diagrams (forms of representation) the complete set of representations has the potential to capture both the process of design and serve as a product of design work. Over a four year period a set of representations was developed and trialed in a year-long senior capstone course in electrical and computer engineering at a small, private liberal arts institution. Using an iterative, action research approach that included student input a set of representations was developed by modifying or eliminating ineffective representations and introducing new formats based on analysis of the students’ response and success. To minimize redundancy and work towards completeness (i.e. a lean, 360° view of the process and product) representations were organized using a “design canvas” modeled after the Business Model Canvas. The Design Canvas classifies representations by actionable questions on two axes—system development and design choices— which in turn are organized hierarchically by scale. Results of the project and examples of representations for the current iteration of the Design Canvas are presented along with the Design Canvas development process.  more » « less
Award ID(s):
1640706
PAR ID:
10062693
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ASEE annual conference & exposition proceedings
ISSN:
2153-5868
Page Range / eLocation ID:
21101
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Academic bridge courses are implemented to impact students’ academic success by revising fundamental concepts and skills necessary to successfully complete discipline-specific courses. The bridge courses are often short (one to three weeks) and highly dense in content (commonly mathematics or math-related applications). With the support of the NSF-funded (DUE - Division of Undergraduate Education) STEM Center at Sam Houston State University (SHSU), we designed a course for upcoming engineering majors (i.e., first-year students and transfer students) that consists of a two-week-long pre-semester course organized into two main sessions. The first sessions (delivered in the mornings) were synchronous activities focused on strengthening student academic preparedness and socio-academic integration and fostering networking leading to a strong STEM learning community. The second sessions (delivered in the afternoons) were asynchronous activities focused on discipline-specific content knowledge in engineering. The engineering concepts were organized via eight learning modules covering basic math operations, applied trigonometry, functions in engineering, applied physics, introduction to statics and Microsoft Excel, and engineering economics and its applied decision. All materials in the course were designed by engineering faculty (from the chair of the department to assistant professors and lecturers in engineering) and one educational research faculty (from the department of chemistry). The course design process started with a literature review on engineering bridge courses to understand prior work, followed by surveying current engineering faculty to propose goals for the course. The designed team met weekly after setting the course goals over two semesters. The design process was initiated with backward design principles (i.e., start with the course goals, then the assessments, end with the learning activities) and continued with ongoing revision. The work herein presents this new engineering bridge course’s goals, strategy, and design process. Preliminary student outcomes will be discussed based on the course’s first implementation during summer 2021. 
    more » « less
  2. Capstone design courses, an established component of undergraduate engineering curricula, offer students the opportunity to synthesize their prior engineering coursework and apply professional and technical skills towards projects with practical application. During this unique experience, capstone faculty enable mentored exploration, coaching students to navigate the design process to complete complex and open-ended projects. However, each capstone scope of work requires project specific knowledge and skills that capstone students need to independently research and comprehend. Findings from our study of recent graduates during their first year on the job suggest that self-directed learning isn’t just occurring in the capstone experience, but it is also an essential skill in professional workplaces. In this paper we share data regarding participants’ experiences relying on self-directed learning while working on their capstone projects and later in post-graduation environments. We consider the ways that capstone design educators can design course content and mentor students to help promote this critical skill and conclude by offering recommendations. 
    more » « less
  3. null (Ed.)
    This article details the multi-year process of adding a “design thread” to our department’s electrical and computer engineering curricula. We use the conception of a “thread” to mean a sequence of courses that extend unbroken across each year of the undergraduate curriculum. The design thread includes a project-based introduction to the discipline course in the first year, a course in the second year focusing on measurement and fabrication, a course in the third year to frame technical problems in societal challenges, and culminates with our two-semester, client-driven fourth-year capstone design sequence. The impetus to create a design thread arose from preparation for an ABET visit where we identified a need for more “systems thinking” within the curriculum, particularly system decomposition and modularity; difficulty in having students make engineering evaluations of systems based on data; and students’ difficulty transferring skills in testing, measurement, and evaluation from in-class lab scenarios to more independent work on projects. We also noted that when working in teams, students operated more collectively than collaboratively. In other words, rather than using task division and specialization to carry out larger projects, students addressed all problems collectively as a group. This paper discusses the process through which faculty developed a shared conception of design to enable coherent changes to courses in the four year sequence and the political and practical compromises needed to create the design thread. To develop a shared conception of design faculty explored several frameworks that emphasized multiple aspects of design. Course changes based on elements of these frameworks included introducing design representations such as block diagrams to promote systems thinking in the first year and consistently utilizing representations throughout the remainder of the four year sequence. Emphasizing modularity through representations also enabled introducing aspects of collaborative teamwork. While students are introduced broadly to elements of the design framework in their first year, later years emphasize particular aspects. The second year course focuses on skills in fabrication and performance measurement while the third year course emphasizes problem context and users, in an iterative design process. The client-based senior capstone experience integrates all seven aspects of our framework. On the political and organizational side implementing the design thread required major content changes in the department’s introductory course, and freeing up six credit-hour equivalents, one and a half courses, in the curriculum. The paper discusses how the ABET process enabled these discussions to occur, other curricular changes needed to enable the design thread to be implemented, and methods which enabled the two degree programs to align faculty motivation, distribute the workload, and understand the impact the curricular changes had on student learning. 
    more » « less
  4. This paper reports on the development of a second-year design course intended to support student design capabilities in a coherent four-year design thread across an Electrical and Computer Engineering (ECE) curriculum. At Bucknell University students take four years of design starting by building an Internet of Things (IoT) sensor module in first year, a robust IoT product in the second year, using the product to address societal challenges in the third year, followed by a culminating capstone experience in the fourth year. While the first year introduces students broadly to the ECE curriculum, the second-year course reported here is designed to provide students’ abilities in electronic device fabrication and test and measurement, areas students at Bucknell have had little previous exposure to. This course is designed to anchor the remainder of the design sequence by giving all students the capability to independently fabricate and test robust electronic devices. The second-year course has students individually build an IoT appliance—the Digital / Analog Modular Neopixel-based Electronic Display, or DAMNED project—by going through twelve sequential steps of design from simulation through PCB layout, device and enclosure fabrication, to application development. Because this course is most students’ first encounter with electronic fabrication and test and measurement techniques, the course has students build the project in twelve steps. Each weekly step is heavily scaffolded to allow students to work independently out of class. The paper discusses how such scaffolding is supported through design representations such as block diagrams, pre-class preparation, rapid feedback, and the use of campus makerspaces and educational software tools. The paper also shares results of making iterative improvement to the course structure using action research, and early indications that students are able transfer skills into subsequent design courses. 
    more » « less
  5. Abstract This “work in progress” paper describes a multiyear project to study the development of engineering identity in a chemical and biological engineering program at Montana State University. The project focuses on how engineering identity may be impacted by a series of interventions utilizing subject material in a senior-level capstone design course and has the senior capstone design students serve as peer-mentors to first- and second-year students. A more rapid development of an engineering identity by first- and second-year students is suspected to increase retention and persistence in this engineering program. Through a series of timed interventions scheduled to take place in the first and second year, which includes cohorts that will serve as negative controls (no intervention), we hope to ascertain the following: (1) the extent to which, relative to a control group, exposure to a peer mentor increases a students’ engineering identity development over time compared to those who do not receive peer mentoring and (2) if the quantity and/or timing of the peer interactions impact engineering identity development. While the project includes interventions for both first- and second-year students, this work in progress paper focuses on the experiences of first year freshman as a result of the interventions and their development of an engineering identity over the course of the semester. Early in the fall semester, freshman chemical engineering students enrolled in an introductory chemical engineering course and senior students in a capstone design course were administered a survey which contained a validated instrument to assess engineering identity. The first-year course has 107 students and the senior-level course has 92 students and approximately 50% of the students in both cohorts completed the survey. Mid-semester, after the first-year students were introduced to the concepts of process flow diagrams and material balances in their course, senior design student teams gave presentations about their capstone design projects in the introductory course. The presentations focused on the project goals, design process and highlighted the process flow diagrams. After the presentations, freshman and senior students attended small group dinners as part of a homework assignment wherein the senior students were directed to communicate information about their design projects as well as share their experiences in the chemical engineering program. Dinners occurred overall several days, with up to ten freshman and five seniors attending each event. Freshman students were encouraged to use this time to discover more about the major, inquire about future course work, and learn about ways to enrich their educational experience through extracurricular and co-curricular activities. Several weeks after the dinner experience, senior students returned to give additional presentations to the freshman students to focus on the environmental and societal impacts of their design projects. We report baseline engineering identity in this paper. 
    more » « less