skip to main content


Title: Navigating Process-Product Tensions using a Design Canvas
National surveys of design courses find many similarities between the way capstone courses are structured and implemented, although more programs focus on the design process rather than creating a product. What is not as well understood are the methods and techniques used to inform students of interrelationship between product and process. This paper discusses the use of multiple formal design representations as a means to focus learning on the interrelation between design processes and products. The ability to utilize multiple representations has been demonstrated to be effective in improving student learning in math education, a discipline that can be highly process-oriented. Similarly representational fluency impacts engineering modeling. In the context of teaching design the term representation here refers to a written or graphical expression of some aspect of the design process and/or product. Ideally the set of representations would form a minimal and complete orthonormal basis set; that is the ensemble of representations captures the design in its entirety and the representations are not redundant. Since the design work of many engineers is a set of plans or diagrams (forms of representation) the complete set of representations has the potential to capture both the process of design and serve as a product of design work. Over a four year period a set of representations was developed and trialed in a year-long senior capstone course in electrical and computer engineering at a small, private liberal arts institution. Using an iterative, action research approach that included student input a set of representations was developed by modifying or eliminating ineffective representations and introducing new formats based on analysis of the students’ response and success. To minimize redundancy and work towards completeness (i.e. a lean, 360° view of the process and product) representations were organized using a “design canvas” modeled after the Business Model Canvas. The Design Canvas classifies representations by actionable questions on two axes—system development and design choices— which in turn are organized hierarchically by scale. Results of the project and examples of representations for the current iteration of the Design Canvas are presented along with the Design Canvas development process.  more » « less
Award ID(s):
1640706
NSF-PAR ID:
10062693
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ASEE annual conference & exposition proceedings
ISSN:
2153-5868
Page Range / eLocation ID:
21101
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This article details the multi-year process of adding a “design thread” to our department’s electrical and computer engineering curricula. We use the conception of a “thread” to mean a sequence of courses that extend unbroken across each year of the undergraduate curriculum. The design thread includes a project-based introduction to the discipline course in the first year, a course in the second year focusing on measurement and fabrication, a course in the third year to frame technical problems in societal challenges, and culminates with our two-semester, client-driven fourth-year capstone design sequence. The impetus to create a design thread arose from preparation for an ABET visit where we identified a need for more “systems thinking” within the curriculum, particularly system decomposition and modularity; difficulty in having students make engineering evaluations of systems based on data; and students’ difficulty transferring skills in testing, measurement, and evaluation from in-class lab scenarios to more independent work on projects. We also noted that when working in teams, students operated more collectively than collaboratively. In other words, rather than using task division and specialization to carry out larger projects, students addressed all problems collectively as a group. This paper discusses the process through which faculty developed a shared conception of design to enable coherent changes to courses in the four year sequence and the political and practical compromises needed to create the design thread. To develop a shared conception of design faculty explored several frameworks that emphasized multiple aspects of design. Course changes based on elements of these frameworks included introducing design representations such as block diagrams to promote systems thinking in the first year and consistently utilizing representations throughout the remainder of the four year sequence. Emphasizing modularity through representations also enabled introducing aspects of collaborative teamwork. While students are introduced broadly to elements of the design framework in their first year, later years emphasize particular aspects. The second year course focuses on skills in fabrication and performance measurement while the third year course emphasizes problem context and users, in an iterative design process. The client-based senior capstone experience integrates all seven aspects of our framework. On the political and organizational side implementing the design thread required major content changes in the department’s introductory course, and freeing up six credit-hour equivalents, one and a half courses, in the curriculum. The paper discusses how the ABET process enabled these discussions to occur, other curricular changes needed to enable the design thread to be implemented, and methods which enabled the two degree programs to align faculty motivation, distribute the workload, and understand the impact the curricular changes had on student learning. 
    more » « less
  2. This Complete Research paper investigates the holistic assessment of creativity in design solutions in engineering education. Design is a key element in contemporary engineering education, given the emphasis on its development through the ABET criteria. As such, design projects play a central role in many first-year engineering courses. Creativity is a vital component of design capability which can influence design performance; however, it is difficult to measure through traditional assessment rubrics and holistic assessment approaches may be more suitable to assess creativity of design solutions. One such holistic assessment approach is Adaptive Comparative Judgement (ACJ). In this system, student designs are presented to judges in pairs, and they are asked to select the item of work that they deem to have demonstrated the greatest level of a specific criterion or set of criteria. Each judge is asked to make multiple judgements where the work they are presented with is adaptively paired in order to create a ranked order of all items in the sample. The use of this assessment approach in technology education has demonstrated high levels of reliability among judges (~0.9) irrespective of whether the judges are students or faculty. This research aimed to investigate the use of ACJ to holistically assess the creativity of first-year engineering students design solutions. The research also sought to explore the differences, if any, that would exist between the rank order produced by first-year engineering students and the faculty who regularly teach first-year students. Forty-six first-year engineering students and 23 faculty participated in this research. A separate ACJ session was carried out with each of these groups; however, both groups were asked to assess the same items of work. Participants were instructed to assess the creativity of 101 solutions to a design task, a “Ping Pong problem,” where undergraduate engineering students had been asked to design a ping pong ball launcher to meet specific criteria. In both ACJ sessions each item of work was included in at least 11 pairwise comparisons, with the maximum number of comparisons for a single item being 29 in the faculty ACJ session and 50 in the student ACJ session. The data from the ACJ sessions were analyzed to determine the reliability of using ACJ to assess creativity of design solutions in first-year engineering education, and to explore whether the rankings produced from the first-year engineering students ACJ session differed significantly from those of the faculty. The results indicate a reasonably high level of reliability in both sessions as measured by the Scale Separation Reliability (SSR) coefficient, SSRfaculty = 0.65 ± 0.02, SSRstudents = 0.71 ± 0.02. Further a strong correlation was observed between the ACJ ranks produced by the students and faculty both when considered in terms of the relative differences between items of work, r = .533, p < .001, and their absolute rank position, σ = .553, p < .001. These findings indicate that ACJ is a promising tool for holistically assessing design solutions in engineering education. Additionally, given the strong correlation between ranks of students and faculty, ACJ could be used to include students in their own assessment to reduce the faculty grading burden or to develop a shared construct of capability which could increase the alignment of teaching and learning. 
    more » « less
  3. With programs like Project Lead The Way, engineering activities and curricula have increased in frequency in secondary school programs. In 2013, Next Generation Science Standards were published formalizing the importance of science and engineering practices in secondary schools as part of the ‘Three Dimensions of Science Learning’. For a typical secondary science department, the current engineering options can either be very expensive and/or very time consuming (often requiring engineering courses outside of traditional science courses). The purpose of a broader NSF-funded project is to create and evaluate a more accessible system for engaging students in one of the key components of engineering design: problem framing. This work presents one tool developed as part of that effort, the Need Identification Canvas (NIC), and the assessment methods developed for evaluating students’ engineering problem-framing skills using the NIC. The NIC is a tool for guiding novice designers through the need identification process, specifically addressing four key subcategories: stakeholders, stakeholder needs, a need statement, and information gathering. Student responses in each category were evaluated using a rubric, developed as part of this effort. The canvas has been implemented with suburban high school biology, chemistry, physics, and physical science classes (N=55) as well as first-year engineering students (N=18) at a private undergraduate university to provide a basis of comparison for the higher levels of achievement. In addition to comparisons between grade levels, secondary students that have and have not been taking supplemental engineering courses as part of their program of study were compared. Significant differences were found amongst a variety of these subgroups. 
    more » « less
  4. This paper reports on the development of a second-year design course intended to support student design capabilities in a coherent four-year design thread across an Electrical and Computer Engineering (ECE) curriculum. At Bucknell University students take four years of design starting by building an Internet of Things (IoT) sensor module in first year, a robust IoT product in the second year, using the product to address societal challenges in the third year, followed by a culminating capstone experience in the fourth year. While the first year introduces students broadly to the ECE curriculum, the second-year course reported here is designed to provide students’ abilities in electronic device fabrication and test and measurement, areas students at Bucknell have had little previous exposure to. This course is designed to anchor the remainder of the design sequence by giving all students the capability to independently fabricate and test robust electronic devices. The second-year course has students individually build an IoT appliance—the Digital / Analog Modular Neopixel-based Electronic Display, or DAMNED project—by going through twelve sequential steps of design from simulation through PCB layout, device and enclosure fabrication, to application development. Because this course is most students’ first encounter with electronic fabrication and test and measurement techniques, the course has students build the project in twelve steps. Each weekly step is heavily scaffolded to allow students to work independently out of class. The paper discusses how such scaffolding is supported through design representations such as block diagrams, pre-class preparation, rapid feedback, and the use of campus makerspaces and educational software tools. The paper also shares results of making iterative improvement to the course structure using action research, and early indications that students are able transfer skills into subsequent design courses. 
    more » « less
  5. Modern 3D printing technology makes it relatively easy and affordable to produce physical models that offer learners concrete representations of otherwise abstract concepts and representations. We hypothesize that integrating hands-on learning with these models into traditionally lecture-dominant courses may help learners develop representational competence, the ability to interpret, switch between, and appropriately use multiple representations of a concept as appropriate for learning, communication and analysis. This approach also offers potential to mitigate difficulties that learners with lower spatial abilities may encounter in STEM courses. Spatial thinking connects to representational competence in that internal mental representations (i.e. visualizations) facilitate work using multiple external representations. A growing body of research indicates well-developed spatial skills are important to student success in many STEM majors, and that students can improve these skills through targeted training. This NSF-IUSE exploration and design project began in fall 2018 and features cross-disciplinary collaboration between engineering, math, and psychology faculty to develop learning activities with 3D-printed models, build the theoretical basis for how they support learning, and assess their effectiveness in the classroom. We are exploring how such models can support learners’ development of conceptual understanding and representational competence in calculus and engineering statics. We are also exploring how to leverage the model-based activities to embed spatial skills training into these courses. The project is addressing these questions through parallel work piloting model-based learning activities in the classroom and by investigating specific attributes of the activities in lab studies and focus groups. To date we have developed and piloted a mature suite of activities covering a variety of topics for both calculus and statics. Class observations and complementary studies in the psychology lab are helping us develop a theoretical framework for using the models in instruction. Close observation of how students use the models to solve problems and as communication tools helps identify effective design elements. We are administering two spatial skills assessments as pre/post instruments: the Purdue Spatial Visualizations Test: Rotations (PSVT:R) in calculus; and the Mental Cutting Test (MCT) in statics. We are also developing strategies and refining approaches for assessing representational competence in both subject areas. Moving forward we will be using these assessments in intervention and control sections of both courses to assess the effectiveness of the models for all learners and subgroups of learners. 
    more » « less