skip to main content


Title: An optofluidic metasurface for lateral flow-through detection of cancer biomarker (Conference Presentation)
The rapid growth of point-of-care tests demands for biomolecule sensors with higher sensitivity and smaller size. We developed an optofluidic metasurface that combined silicon photonics and nanofluidics to achieve a lateral flow-through biosensor to fulfill the needs. The metasurface consists of a 2D array of silicon nanoposts fabricated on a silicon-on-insulator substrate. The device takes advantage of the high-Q resonant modes associated with the optical bound state and the nanofluidic delivery of analyte to overcome the problem of diffusion-limited detection that occurs in almost all conventional biosensors and offer a high refractive index sensitivity. We used rigorous coupled wave analysis and finite element analysis to design and optimize the device. We will present its photonic band diagram to identify the optical bound state and high-Q resonance modes near 1550 nm. The device was fabricated using e-beam lithography followed by a lift-off and reactive ion etching process. Reflectance of the sensor was measured using a tunable laser and a photodetector. The preliminary result shows a refractive index sensitivity of 720 nm/RIU. Furthermore, we implemented the optical metasurface as a lateral flow-through biosensor by covering the nanoposts using a PDMS cover. The nanofluidic channels are formed between the nanoposts for the flow of samples. The lateral flow-through sensor was used to detect the epidermal growth factor receptor (ErbB2), a widely used protein biomarker for breast cancer screening. The results show that the device can quantitatively measure the binding of ErBb2 antibody and ErBb2 by the continuous monitoring of the resonant wavelength shift.  more » « less
Award ID(s):
1711839
NSF-PAR ID:
10062945
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proc. SPIE 10491, Microfluidics, BioMEMS, and Medical Microsystems XVI, 1049113 (15 March 2018)
Page Range / eLocation ID:
38
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The optical resonances of the silicon nanopost array patterned on a silicon-on-insulator (SOI) substrate have been investigated. The fabricated device supports optical resonances in the range of 1.55 μm with a variable Q factor depending on the angle of incidence. By sealing the device on top of the nanoposts, we demonstrated a lateral flow-through label-free biosensor built on SOI. The biosensor exhibits the refractive index sensitivity of 800 nm/RIU and the femtomolar sensitivity for detection of a breast cancer biomarker (ErbB2). 
    more » « less
  2. Subwavelength resonant lattices offer a wide range of fascinating spectral phenomena under broadside illumination. The resonance mechanism relies on the generation of lateral Bloch modes that are phase matched to evanescent diffraction orders. The spectral properties and the total number of resonance states are governed by the structure of leaky modes and the mode count. This study investigates the effect of interface modifications on the band dynamics and bound-state transitions in guided-mode resonant lattices. We provide photonic lattices comprising rectangular Si3N4 rods with a liquid film with an adjustable boundary. The band structures and band flips are examined through numerical simulations using the rigorous coupled-wave analysis (RCWA) method and analyzing the zero-order spectral reflectance as a function of the incident angle. The band structures and band flips are examined through numerical simulations, and the influences of the refractive index and the thickness of the oil layer on the band dynamics are investigated. The results reveal distinct resonance linewidths corresponding to different refractive indices of the oil layer. Furthermore, the effect of the oil thickness on the band dynamics is explored, demonstrating precise control over the number of propagating modes within the lattice structure. Theoretical simulations and experimental results are presented for a subwavelength silicon-nitride lattice combined with a liquid film featuring an adjustable boundary. The presence of a relatively thick liquid waveguiding region enables the emergence of additional modes, including the first four transverse-electric (TE) leaky modes, which produce observable resonance signatures. Through experimental manipulation of the basic lattice’s duty cycle, the four bands undergo quantifiable band transitions and closures. The experimental results obtained within the 1400–1600 nm spectral range exhibit reasonable agreement with the numerical analysis. These findings underscore the significant role played by the interface in shaping the band dynamics of the lattice structure, providing valuable insights into the design and optimization of photonic lattices with adjustable interfaces.

     
    more » « less
  3. Abstract

    A sensing platform is presented that uses dielectric Huygens source metasurfaces to measure refractive index changes in a microfluidic channel with experimentally measured sensitivity of 323 nm RIU−1, a figure of merit (FOM) of 5.4, and a response of 8.2 (820%) change in transmittance per refractive index unit (T/RIU). Changes in the refractive index of liquids flown through the channel are measured by single‐wavelength transmittance measurement, requiring only a simple light source and photodetector, significantly reducing device expense in comparison to state‐of‐the‐art refractive index sensing technologies. A technoeconomic analysis predicts a device costing ≈$2400 that is capable of detecting refractive index changes of the order of 2*10−8. The metasurfaces utilized are low profile, scalable, and use materials and fabrication processes compatible with CMOS and other technologies making them suitable for device integration. The Huygens metasurface system, characterized by spectrally overlapping electric and magnetic dipole modes, offers a high degree of customizability. Interplay between the two resonances may be controlled via metasurface geometry, leading to tunability of device sensitivity and measurement range. Ultrahigh sensitivity of 350 nm RIU−1with FOM of 219, corresponding to single‐wavelength sensitivity of 360 RIU−1, is demonstrated computationally through use of antisymmetric resonances of a Huygens metasurface illuminated at small incidence angles.

     
    more » « less
  4. Abstract

    Refractive index (RI) sensors are of great interest for label-free optical biosensing. A tapered optical fiber (TOF) RI sensor with micron-sized waist diameters can dramatically enhance sensor sensitivity by reducing the mode volume over a long distance. Here, a simple and fast method is used to fabricate highly sensitive refractive index sensors based on localized surface plasmon resonance (LSPR). Two TOFs (l = 5 mm) with waist diameters of 5 µm and 12 µm demonstrated sensitivity enhancement at λ = 1559 nm for glucose sensing (5–45 wt%) at room temperature. The optical power transmission decreased with increasing glucose concentration due to the interaction of the propagating light in the evanescent field with glucose molecules. The coating of the TOF with gold nanoparticles (AuNPs) as an active layer for glucose sensing generated LSPR through the interaction of the evanescent wave with AuNPs deposited at the tapered waist. The results indicated that the TOF (Ø = 5 µm) exhibited improved sensing performance with a sensitivity of 1265%/RIU compared to the TOF (Ø = 12 µm) at 560%/RIU towards glucose. The AuNPs were characterized using scanning electron microscopy and ultraviolent-visible spectroscopy. The AuNPs-decorated TOF (Ø = 12 µm) demonstrated a high sensitivity of 2032%/RIU toward glucose. The AuNPs-decorated TOF sensor showed a sensitivity enhancement of nearly 4 times over TOF (Ø = 12 µm) with RI ranging from 1.328 to 1.393. The fabricated TOF enabled ultrasensitive glucose detection with good stability and fast response that may lead to next-generation ultrasensitive biosensors for real-world applications, such as disease diagnosis.

     
    more » « less
  5. Abstract

    Porous SiO2(PSiO2) with ultralow refractive index (n= 1.09) is incorporated as the cladding of a photonic crystal (PC) refractive index sensor with enhanced sensitivity through the establishment of resonant modes that principally reside in the liquid medium covering the PC surface. PSiO2, obtained by thermal oxidation of porous Si that has been transferred to a transparent substrate, is transparent at visible and near infrared wavelengths with a refractive index determined by its porosity. The PSiO2periodic grating structure (Λ = 590 nm) is patterned by nanoimprint lithography and reactive ion etching, then conformally coated by sputtering high refractive index TiO2to seal the pores from liquid infiltration. With the refractive index of PSiO2much lower than that of water, the resonant mode “flips” its spatial distribution from within the solid dielectric regions of the photonic crystal to reside mainly in the water media covering the PC, resulting in 4× greater resonant wavelength shift for a fixed refractive index change. This study demonstrates design, fabrication, and testing of the sensor as a refractometer, supported by electromagnetic simulations of the resonant mode spatial distribution, in which porous PC sensors are compared to nonporous PC sensors.

     
    more » « less