skip to main content

Title: Enhancing the Ability of Pervious Concrete to Remove Heavy Metals from Stormwater
Catastrophic release of heavy metals from the King River mine in Colorado and the Minas Gerais dam in Brazil have brought to the forefront the importance of contaminant stabilization and remediation in surface waters. Permeable reactive materials are currently utilized for the remediation of heavy metals and other pollutants by employing reactive media to remove contaminants. This research investigated the use of fly ashes with loss on ignition or sulfur trioxide exceeding ASTM C618 limits to enhance pollutant removal in pervious concrete. The high carbon and sulfur contents of the noncompliant fly ashes provide additional capacity to remove lead, cadmium, and zinc. High-sulfur and high-carbon fly ashes were less effective in metal removal at higher metal concentrations but improved removal at lower concentrations. These results suggest pervious concrete can be designed as an effective remedial technique for use in many infrastructure applications, including beneath permeable pavement, permeable asphalt, revetment, permeable shoulders, gabions for slope stability, mine tailing dams, and emergency surface water cleanup.
; ;
Award ID(s):
Publication Date:
Journal Name:
Journal of sustainable water in the built environment
Sponsoring Org:
National Science Foundation
More Like this
  1. Permeable reactive barriers (PRBs) are a well-known technique for groundwater remediation using industrialized reactive media such as zero-valent iron and activated carbon. Permeable reactive concrete (PRC) is an alternative reactive medium composed of relatively inexpensive materials such as cement and aggregate. A variety of multimodal, simultaneous processes drive remediation of metals from contaminated groundwater within PRC systems due to the complex heterogeneous matrix formed during cement hydration. This research investigated the influence coarse aggregate, portland cement, fly ash, and various combinations had on the removal of lead, cadmium, and zinc in solution. Absorption, adsorption, precipitation, co-precipitation, and internal diffusion of the metals are common mechanisms of removal in the hydrated cement matrix and independent of the aggregate. Local aggregates can be used as the permeable structure also possessing high metal removal capabilities, however calcareous sources of aggregate are preferred due to improved removal with low leachability. Individual adsorption isotherms were linear or curvilinear up, indicating a preferred removal process. For PRC samples, metal saturation was not reached over the range of concentrations tested. Results were then used to compare removal against activated carbon and aggregate-based PRBs by estimating material costs for the remediation of an example heavy metal contaminated Superfundmore »site located in the Midwestern United States, Joplin, Missouri.« less
  2. Nitrogen and phosphorus contained in stormwater runoff contaminate both surface and groundwaters, causing problems for natural aquatic systems and human health. Pervious concrete specifically designed for pollutant removal, otherwise known as permeable reactive concrete (PRC), may be used as a novel component of existing infrastructure to remove nutrients from runoff. This research compares the removal and retention of dissolved, inorganic nitrate-nitrogen (NO3-N) and orthophosphate-phosphorus (PO4-P) for three PRC mixtures. The control PRC was ordinary portland cement (OPC) and was compared against other mixtures containing 25% replacement with Class C fly ash or with drinking water treatment residual waste (DWTR). Concrete specimens were jar-tested for 72 h in three different concentrations of nitrate or phosphate. The control mixture removed 60% of NO3-N and more than 80% PO4-P, and the fly ash mixture removed up to 39% of NO3-N and more than 91% PO4-P. The DWTR mixture leached NO3-N while removing more than 80% PO4-P. Linear isotherms were determined for the range of nutrient concentrations tested. Column leach tests were conducted on specimens after initial jar testing and used as an indication of removal permanence. Inorganic removal mechanisms were investigated, including crystallographic substitution, adsorption, and physical solute filtering in cement pore space.more »Results indicate PRC can be one of the leading methods to remove nitrate from surface waters and is as efficient as other methods for orthophosphate removal.« less
  3. Heavy metal ions are highly toxic and widely spread as environmental pollutants. This work reports the development of two novel chelating adsorbents, based on the chemical modifications of graphene oxide and zirconium phosphate by functionalization with melamine-based chelating ligands for the effective and selective extraction of Hg( ii ) and Pb( ii ) from contaminated water sources. The first adsorbent melamine, thiourea-partially reduced graphene oxide (MT-PRGO) combines the heavier donor atom sulfur with the amine and triazine nitrogen's functional groups attached to the partially reduced GO nanosheets to effectively capture Hg( ii ) ions from water. The MT-PRGO adsorbent shows high efficiency for the extraction of Hg( ii ) with a capacity of 651 mg g −1 and very fast kinetics resulting in a 100% removal of Hg( ii ) from 500 ppb and 50 ppm concentrations in 15 second and 30 min, respectively. The second adsorbent, melamine zirconium phosphate (M-ZrP), is designed to combine the amine and triazine nitrogen's functional groups of melamine with the hydroxyl active sites of zirconium phosphate to effectively capture Pb( ii ) ions from water. The M-ZrP adsorbent shows exceptionally high adsorption affinity for Pb( ii ) with a capacity of 681 mg gmore »−1 and 1000 mg g −1 using an adsorbent dose of 1 g L −1 and 2 g L −1 , respectively. The high adsorption capacity is also coupled with fast kinetics where the equilibrium time required for the 100% removal of Pb( ii ) from 1 ppm, 100 ppm and 1000 ppm concentrations is 40 seconds, 5 min and 30 min, respectively using an adsorbent dose of 1 g L −1 . In a mixture of six heavy metal ions at a concentration of 10 ppm, the removal efficiency is 100% for Pb( ii ), 99% for Hg( ii ), Cd( ii ) and Zn( ii ), 94% for Cu( ii ), and 90% for Ni( ii ) while at a higher concentration of 250 ppm the removal efficiency for Pb( ii ) is 95% compared to 23% for Hg( ii ) and less than 10% for the other ions. Because of the fast adsorption kinetics, high removal capacity, excellent regeneration, stability and reusability, the MT-PRGO and M-ZrP are proposed as top performing remediation adsorbents for the solid phase extraction of Hg( ii ) and Pb( ii ), respectively from contaminated water.« less
  4. Abstract

    The removal of heavy metal contaminants from water is important for public health, and recently many two-dimensional (2D) materials with high specific surface areas are being studied as promising new active components in water purification. In particular, 2D MoS2nanosheets have been used for the removal of various heavy metals, but usually in either in complex geometries and composites, or in the chemically exfoliated metallic 1T-MoS2phase. However, the interaction of heavy metals dissolved in water with unmodified semiconducting 2H-MoS2is not well studied. In this paper, we report a detailed fundamental investigation of how Pb2+ions interact with 2H-MoS2. We observe small solid clusters that form on the MoS2surfaces after exposing them to Pb(NO3)2aqueous solutions as shown by atomic force microscopy and transmission electron microscopy, and for liquid phase exfoliated MoS2we observe the nanosheets precipitating out of dispersion along with insoluble solid granules. We use a combination of x-ray photoelectron spectroscopy and x-ray diffraction to identify these solid clusters and granules as primarily PbSO4with some PbMoO4. We put forth an interaction mechanism that involves MoS2defects acting as initiation sites for the partial dissolution in aqueous oxygenated conditions which produces MoO42−and SO42−ions to form the solids with Pb2+. These results are an importantmore »contribution to our fundamental understanding of how MoS2interacts with metal ions and will influence further efforts to exploit MoS2for water remediation applications.

    « less
  5. Capacitive deionization (CDI) technologies have gained intense attention for water purification and desalination in recent years. Inexpensive and widely available porous carbon materials have enabled the fast growth of electrosorption research, highlighting the promise of CDI as a potentially cost-effective technology to remove ions. Whereas the main focus of CDI has been on bulk desalination, there has been a recent shift towards electrosorption for selective ion separations. Heavy metals are pollutants that can have severe health impacts and are present in both industrial wastewater and groundwater leachates. Heavy metal ions, such as chromium, cadmium, or arsenic, are of great concern to traditional treatment technologies, due to their low concentration and the presence of competing species. The modification/functionalization of porous carbon and recent developments of faradaic and redox-active materials have offered a new avenue for selective ion-binding of heavy metal contaminants. Here, we review the progress in electrosorptive technologies for heavy metal separations. We provide an overview of the wide applicability of carbon-based electrodes for heavy metal removal. In parallel, we highlight the trend toward modification of carbon materials, new developments in faradaic interfaces, and the underlying physico-chemical mechanisms that promote selective heavy metal separations.