- Award ID(s):
- 2015366
- PAR ID:
- 10331950
- Date Published:
- Journal Name:
- Operations Research
- ISSN:
- 0030-364X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Planning safe trajectories for nonlinear dynamical systems subject to model uncertainty and disturbances is challenging. In this work, we present a novel approach to tackle chance-constrained trajectory planning problems with nonconvex constraints, whereby obstacle avoidance chance constraints are reformulated using the signed distance function. We propose a novel sequential convex programming algorithm and prove that under a discrete time problem formulation, it is guaranteed to converge to a solution satisfying first-order optimality conditions. We demonstrate the approach on an uncertain 6 degrees of freedom spacecraft system and show that the solutions satisfy a given set of chance constraints.more » « less
-
Adversarial training is well-known to produce high-quality neural network models that are empirically robust against adversarial perturbations. Nevertheless, once a model has been adversarially trained, one often desires a certification that the model is truly robust against all future attacks. Unfortunately, when faced with adversarially trained models, all existing approaches have significant trouble making certifications that are strong enough to be practically useful. Linear programming (LP) techniques in particular face a “convex relaxation barrier” that prevent them from making high-quality certifications, even after refinement with mixed-integer linear programming (MILP) and branch-and-bound (BnB) techniques. In this paper, we propose a nonconvex certification technique, based on a low-rank restriction of a semidefinite programming (SDP) relaxation. The nonconvex relaxation makes strong certifications comparable to much more expensive SDP methods, while optimizing over dramatically fewer variables comparable to much weaker LP methods. Despite nonconvexity, we show how off-the-shelf local optimization algorithms can be used to achieve and to certify global optimality in polynomial time. Our experiments find that the nonconvex relaxation almost completely closes the gap towards exact certification of adversarially trained models.more » « less
-
Abstract Low-rank matrix models have been universally useful for numerous applications, from classical system identification to more modern matrix completion in signal processing and statistics. The nuclear norm has been employed as a convex surrogate of the low-rankness since it induces a low-rank solution to inverse problems. While the nuclear norm for low rankness has an excellent analogy with the $\ell _1$ norm for sparsity through the singular value decomposition, other matrix norms also induce low-rankness. Particularly as one interprets a matrix as a linear operator between Banach spaces, various tensor product norms generalize the role of the nuclear norm. We provide a tensor-norm-constrained estimator for the recovery of approximately low-rank matrices from local measurements corrupted with noise. A tensor-norm regularizer is designed to adapt to the local structure. We derive statistical analysis of the estimator over matrix completion and decentralized sketching by applying Maurey’s empirical method to tensor products of Banach spaces. The estimator provides a near-optimal error bound in a minimax sense and admits a polynomial-time algorithm for these applications.
-
Recently there has been significant theoretical progress on understanding the convergence and generalization of gradient-based methods on nonconvex losses with overparameterized models. Nevertheless, many aspects of optimization and generalization and in particular the critical role of small random initialization are not fully understood. In this paper, we take a step towards demystifying this role by proving that small random initialization followed by a few iterations of gradient descent behaves akin to popular spectral methods. We also show that this implicit spectral bias from small random initialization, which is provably more prominent for overparameterized models, also puts the gradient descent iterations on a particular trajectory towards solutions that are not only globally optimal but also generalize well. Concretely, we focus on the problem of reconstructing a low-rank matrix from a few measurements via a natural nonconvex formulation. In this setting, we show that the trajectory of the gradient descent iterations from small random initialization can be approximately decomposed into three phases: (I) a spectral or alignment phase where we show that that the iterates have an implicit spectral bias akin to spectral initialization allowing us to show that at the end of this phase the column space of the iterates and the underlying low-rank matrix are sufficiently aligned, (II) a saddle avoidance/refinement phase where we show that the trajectory of the gradient iterates moves away from certain degenerate saddle points, and (III) a local refinement phase where we show that after avoiding the saddles the iterates converge quickly to the underlying low-rank matrix. Underlying our analysis are insights for the analysis of overparameterized nonconvex optimization schemes that may have implications for computational problems beyond low-rank reconstructionmore » « less
-
Recently, there has been significant progress in understanding the convergence and generalization properties of gradient-based methods for training overparameterized learning models. However, many aspects including the role of small random initialization and how the various parameters of the model are coupled during gradient-based updates to facilitate good generalization, remain largely mysterious. A series of recent papers have begun to study this role for non-convex formulations of symmetric Positive Semi-Definite (PSD) matrix sensing problems which involve reconstructing a low-rank PSD matrix from a few linear measurements. The underlying symmetry/PSDness is crucial to existing convergence and generalization guarantees for this problem. In this paper, we study a general overparameterized low-rank matrix sensing problem where one wishes to reconstruct an asymmetric rectangular low-rank matrix from a few linear measurements. We prove that an overparameterized model trained via factorized gradient descent converges to the low-rank matrix generating the measurements. We show that in this setting, factorized gradient descent enjoys two implicit properties: (1) coupling of the trajectory of gradient descent where the factors are coupled in various ways throughout the gradient update trajectory and (2) an algorithmic regularization property where the iterates show a propensity towards low-rank models despite the overparameterized nature of the factorized model. These two implicit properties in turn allow us to show that the gradient descent trajectory from small random initialization moves towards solutions that are both globally optimal and generalize well.more » « less