skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Passive metamaterial-based acoustic holograms in ultrasound energy transfer systems
Contactless energy transfer (CET) is a technology that is particularly relevant in applications where wired electrical contact is dangerous or impractical. Furthermore, it would enhance the development, use, and reliability of low-power sensors in applications where changing batteries is not practical or may not be a viable option. One CET method that has recently attracted interest is the ultrasonic acoustic energy transfer, which is based on the reception of acoustic waves at ultrasonic frequencies by a piezoelectric receiver. Patterning and focusing the transmitted acoustic energy in space is one of the challenges for enhancing the power transmission and locally charging sensors or devices. We use a mathematically designed passive metamaterial-based acoustic hologram to selectively power an array of piezoelectric receivers using an unfocused transmitter. The acoustic hologram is employed to create a multifocal pressure pattern in the target plane where the receivers are located inside focal regions. We conduct multiphysics simulations in which a single transmitter is used to power multiple receivers with an arbitrary two-dimensional spatial pattern via wave controlling and manipulation, using the hologram. We show that the multi-focal pressure pattern created by the passive acoustic hologram will enhance the power transmission for most receivers.  more » « less
Award ID(s):
1711139
PAR ID:
10064617
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Passive metamaterial-based acoustic holograms in ultrasound energy transfer systems
Volume:
10595
Page Range / eLocation ID:
43
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents a mid-air thermal interface enabled by a piezoelectric micromachined ultrasonic transducer (pMUT) array. The two-stage thermal actuating process consists of an ultrasound-transmission process via a pMUT array and an ultrasound-absorption process via porous fabric. The pMUT design employs sputtered potassium sodium niobate (K,Na)NbO3 (KNN) thin film with a high piezoelectric coefficient (d31 ~ 8-10 C/m2) as piezoelectric layer for enhanced acoustic pressure. Testing results show that the prototype pMUT array has a resonant frequency around 97.6 kHz, and it can generate 1970 Pa of focal pressure at 15 mm away under the 10.6 Vp-p excitation. As a result, fabric temperature in the central focal area can rise from 24.2℃ to 31.7℃ after 320 seconds with an average temperature variation rate of 0.023℃/s. Moreover, thermal sensations on the human palms have been realized by the heat conduction through the fabric-skin contact. As such, this work highlights the promising application of pMUT array with high acoustic pressure for human-machine interface, particularly mid-air thermal display. 
    more » « less
  2. Chan, Jenna F; Rajaraman, Swaminathan (Ed.)
    We have successfully demonstrated a novel, passive layer-free, curved piezoelectric micromachined ultrasound transducer (PMUT) array, using a sacrificial curved glass template and 30% scandium-doped aluminum nitride (Sc-AlN) as the active layer. The PMUTs were fabricated using a curved, suspended borosilicate glass template created via a chip-scale glass-blowing technique, onto which electrodes and the piezoelectric layer were deposited. The glass layer was thereafter selectively removed. We characterized the performance of a 13 × 13 curved PMUT (cPMUT) array using an electrical impedance analyzer, a Laser Doppler Vibrometer (LDV), and hydrophone pressure measurements. Our results reveal a device resonance frequency of approximately 1.8 MHz in air, with LDV analysis indicating a significantly enhanced low-frequency response of 1.68 nm/V—a fivefold improvement over conventional curved PMUTs with a passive layer. Additionally, acoustic characterization in water showed that this array generates an acoustic pressure of approximately 80 kPa at a 4.4 mm focal distance, with a beam width of 5 mm, and achieves a spatial peak pulse average intensity (ISPPA) of 216 mW/cm2 when driven off-resonance. Furthermore, we demonstrate 20-degree steering capability using our data acquisition system. These advancements highlight significant potential for enhancing the precision and efficacy of medical imaging and therapeutic applications, particularly in ultrasonic diagnostics and treatments. 
    more » « less
  3. This paper presents a mid-air haptic interface device enabled by a piezoelectric micromachined ultrasonic transducer (pMUT) array achieving an unprecedentedly high transmission pressure of 2900 Pa at a 15 mm distance for the first time. The structure is based on sputtered potassium sodium niobate (K,Na)NbO3 (KNN) thin film with a high piezoelectric coefficient (𝑒𝑒31 ~ 8-10 C/m2). A prototype KNN pMUT array composed of 15×15 dual-electrode circular-shape diaphragms exhibits a resonant frequency around 92.4 kHz. Testing results show a transmitting sensitivity of 120.8 Pa/cm2 per volt under only 12 Vp-p excitation at the natural focal point of 15 mm away, which is at least 3 times that of previously reported AlN pMUTs at a similar frequency. Furthermore, an instant non-contact haptic stimulation of wind-like sensation on human palms has been realized. As such, this work sheds light on a new class of pMUT array with high acoustic output pressure for human-machine interface applications, such as consumer electronics and AR/VR systems. 
    more » « less
  4. Contactless ultrasound power transfer (UPT) has emerged as one of the promising techniques for wireless power transfer. Physical processes supporting UPT include the vibrations at a transmitting/acoustic source element, acoustic wave propagation, piezoelectric transduction of elastic vibrations at a receiving element, and acoustic-structure interactions at the surfaces of the transmitting and receiving elements. A novel mechanism using a high-intensity focused ultrasound (HIFU) transmitter is proposed for enhanced power transfer in UPT systems. The HIFU source is used for actuating a finite-size piezoelectric disk receiver. The underlying physics of the proposed system includes the coupling of the nonlinear acoustic field with structural responses of the receiver, which leads to spatial resonances and the appearance of higher harmonics during wave propagation in a medium. Acoustic nonlinearity due to wave kinematics in the HIFU-UPT system is modeled by taking into account the effects of diffraction, absorption, and nonlinearity in the medium. Experimentally-validated acoustic-structure interaction formulation is employed in a finite element based multiphysics model. The results show that the HIFU high-level excitation can cause disproportionately large responses in the piezoelectric receiver if the frequency components in the nonlinear acoustic field coincide with the resonant frequencies of the receiver. 
    more » « less
  5. Abstract Surface acoustic waves (SAWs) have shown great potential for developing sensors for structural health monitoring (SHM) and lab‐on‐a‐chip (LOC) applications. Existing SAW sensors mainly rely on measuring the frequency shifts of high‐frequency (e.g., >0.1 GHz) resonance peaks. This study presents frequency‐locked wireless multifunctional SAW sensors that enable multiple wireless sensing functions, including strain sensing, temperature measurement, water presence detection, and vibration sensing. These sensors leverage SAW resonators on piezoelectric chips, inductive coupling‐based wireless power transmission, and, particularly, a frequency‐locked wireless sensing mechanism that works at low frequencies (e.g., <0.1 GHz). This mechanism locks the input frequency on the slope of a sensor's reflection spectrum and monitors the reflection signal's amplitude change induced by the changes of sensing parameters. The proof‐of‐concept experiments show that these wireless sensors can operate in a low‐power active mode for on‐demand wireless strain measurement, temperature sensing, and water presence detection. Moreover, these sensors can operate in a power‐free passive mode for vibration sensing, with results that agree well with laser vibrometer measurements. It is anticipated that the designs and mechanisms of the frequency‐locked wireless SAW sensors will inspire researchers to develop future wireless multifunctional sensors for SHM and LOC applications. 
    more » « less