skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Thermal and Exergy Analysis in UPS and Battery Rooms by Numerical Simulations
UPS (Uninterruptible Power Supply) units and batteries are essential subsystems in data centers or telecom industries to protect equipment from electrical power spikes, surges and power outages. UPS units handle electrical power and dissipate a large amount of heat, and possess a high efficiency. Therefore, cooling units (e.g., CRACs) are needed to manage the thermal reliability of this equipment. On the other hand, battery operating conditions and reliability are closely related to the ambient temperature according to battery manufacturers; reliability increases when the ambient room temperature is around 25ºC. This study analyzed different room configurations and scenarios using the commercial CFD software 6Sigma Room DCXTM. As a first approach, we evaluated the thermal behavior and cooling degradation using standard thermal performance metrics SHI (Supply Heat Index) and RHI (Return Heat Index). These are frequently implemented in data centers to measure the level of mixing between cold and hot air streams. The results from this evaluation showed that standard cooling practices are inefficient, as values for the two metrics differed considerably from industry recommendations. We also considered a metric from the second law of thermodynamics using exergy destruction. This technique allowed us to find the mechanisms that increase entropy generation the most, including viscous shear and air stream mixing. Reducing exergy destruction will result in lessening lost thermodynamic work and thus reduce energy required for cooling. Typically, UPS and batteries are located in different rooms due to the hydrogen generation by the batteries. The integration of both equipment in the same room is a new concept, and this study aims to analyze the thermal performance of the room. Adding controllability showed improvements by reducing the exergy destruction due to viscous dissipation while slightly increasing thermal mixing in the rooms. Ducting the return flows to avoid flow mixing increased pressure drop, but reduced heat transfer between the hot and cold air streams, which in turn, improved the thermal performance. In the study, we determined the optimal configuration and possible strategies to improve cooling while maintaining desirable battery temperatures.  more » « less
Award ID(s):
1738782
PAR ID:
10065781
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ITHERM
ISSN:
1936-3958
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Data centers house a variety of compute, storage, network IT hardware where equipment reliability is of utmost importance. Heat generated by the IT equipment can substantially reduce its service life if Tjmax, maximum temperature that the microelectronic device tolerates to guarantee reliable operation, is exceeded. Hence, data center rooms are bound to maintain continuous conditioning of the cooling medium becoming large energy consumers. The objective of this work is to introduce and evaluate a new end-of-aisle cooling design which consists of three cooling configurations. The key objectives of close-coupled cooling are to enable a controlled cooling of the IT equipment, flexible as well as modular design, and containment of hot air exhaust from the cold air. The thermal performance of the proposed solution is evaluated using CFD modeling. A computational model of a small size data center room has been developed. Larger axial fans are selected and placed at rack-level which constitute the rack-fan wall design. The model consists of 10 electronic racks each dissipating a heat load of 8kw. The room is modeled to be hot aisle containment i.e. the hot air exhaust exiting for each row is contained and directed within a specific volume. Each rack has passive IT with no server fans and the servers are cooled by means of rack fan wall. The cold aisle is separated with hot aisle by means of banks of heat exchangers placed on the either sides of the aisle containment. Based on the placement of rack fans, the design is divided to three sub designs — case 1: passive heat exchangers with rack fan walls; case 2: active heat exchangers (HXs coupled with fans) with rack fan walls; case 3: active heat exchangers (hxs coupled with fans) with no rack fans. The cooling performance is calculated based on the thermal and flow parameters obtained for all three configurations. The computational data obtained has shown that the case 1 is used only for lower system resistance IT. However, case 2 and Case 3 can handle denser IT systems. Case 3 is the design that can consume lower fan energy as well as handle denser IT systems. The paper also discusses the cooling behavior of each type of design. 
    more » « less
  2. The escalating information technology (IT) loads in modern data centers (DCs) present formidable challenges for traditional room-conditioning systems. The heat dissipated from IT equipment has witnessed a significant surge due to the rapid development of data processing, retrieval, and storage, driven by changing technology trends and the growing demand for online services. This evolving landscape poses a substantial burden on air-cooling systems, pushing them to their limits, especially with the prevailing trend of rising power densities in microprocessors and the emergence of hot spots. Amidst these challenges, singlephase cold plate cooling is gaining traction as IT power densities experience a dramatic climb. However, the widespread adoption of this cooling method faces impediments such as the limited availability of chilled water supplies, constrained air distribution pathways, and the absence of elevated floors in many older DCs. In response to these limitations, liquid-to-air (L2A) cooling distribution units (CDUs) have emerged as an alternative method. By incorporating hybrid air and liquid cooling technologies, the industry aims to achieve precise, ondemand cooling through the utilization of various techniques. In the realm of hybrid cooling systems that integrate both air and liquid cooling technologies, a partial failure of the Computer Room Air Handlers (CRAH) introduces unique challenges. Such a failure has the potential to disrupt the delicate balance between air and liquid cooling components, leading to uneven heat dissipation. Moreover, the interdependence of liquid and air cooling in hybrid systems means that even a partial failure can trigger a domino effect, reducing the overall cooling efficiency of the system. This comprehensive study delves into the implications of partial failure in the CRAH unit within the highpower density racks of a hybrid-cooled DC. The investigation explores how this partial failure impacts various critical parameters, including cooling capacity (CC), supply air temperature (SAT), air flow rate, supply fluid temperature (SFT), and thermal testing vehicle (TTV) heater case temperatures. For the purposes of this study, two L2A in-row CDUs were utilized, with a combined total heat load of 129 kW supplied to three racks. The experimental setup is meticulously equipped with the necessary instruments for monitoring and assessing tests on both the liquid coolant and air sides. By addressing these issues, the research contributes valuable insights to the ongoing efforts to optimize data center cooling solutions in the face of evolving IT demands and technological advancements. 
    more » « less
  3. The ability of traditional room-conditioning systems to accommodate expanding information technology loads is limited in contemporary data centers (DCs), where the storage, storing, and processing of data have grown quickly as a result of evolving technological trends and rising demand for online services, which has led to an increase in the amount of waste heat generated by IT equipment. Through the implementation of hybrid air and liquid cooling technologies, targeted, on-demand cooling is made possible by employing a variety of techniques, which include but are not limited to in-row, overhead, and rear door heat exchanger (HX) cooling systems. One of the most common liquid cooling techniques will be examined in this study based on different conditions for high-power density racks (+50 kW). This paper investigates the cooling performance of a liquid-to-air in-row coolant distribution unit (CDU) in test racks containing seven thermal test vehicles (TTVs) under various conditions, focusing on cooling capacity and HX effectiveness under different supply air temperatures (SAT). This test rig has the necessary instruments to monitor and analyze the experiments on both the liquid coolant and the air sides. Moreover, another experiment is conducted to assess the performance of the CDU that runs under different control fan schemes, as well as how the change of the control type will affect the supply fluid temperature and the TTV case temperatures at 10%, 50%, and 100% of the total power. Finally, suggestions for the best control fan scheme to use for these systems and units are provided at the conclusion of the study. 
    more » « less
  4. As the online frameworks and services are growing rapidly with the evolution of web-based Artificial Intelligence (AI) applications, server rooms are upgrading in computational capacity and size to keep up with these demands. Enterprise companies with their limited capacity server rooms struggle to keep up with these increasing computational demands. Hence, some of them end up outsourcing their servers to co-located facilities (Co-Lo) and the others choose to upgrade their existing server rooms. Correspondingly, the thermal load associated with such upgrades is typically tremendous. Approximately around 40% of the power consumed by datacentres is dissipated as heat. Conventional HVAC systems fail to satisfy the requirements of such server capacities. Not only do they struggle to fulfil the cooling load, but their maldistribution of cool air into the server room forms a major cause for hotspots formation. To tackle this issue, Liquid-to-Air (L2A) Coolant Distribution Units (CDUs) are being used as a liquid-based cooling solution for rack-level cooling. This type of CDUs provide efficient cooling for servers through liquid coolant that is distributed into cooling loops mounted on top of each server board. The generated heat is curried away using this liquid coolant back to the CDU, which then dissipates it into the surrounding air using dedicated pumps, fans, and heat exchanger, hence the name Liquid-to-Air. In the present work, one of the most popular liquid cooling strategies is explored based on various scenarios. the performance of a 24-kW liquid to Air (L2A) CDU is judged based on cooling effect, stability, and reliability. The study is curried out experimentally, in which a test rack with three thermal test vehicles (TTVs) are used to investigate various operation scenarios. Both liquid coolant and air sides of this experimental setup are equipped with the required instrumentations to monitor and analyse the tests. All test cases were taken in a room with limited air conditioning to resemble the environment of upgraded server rooms with conventional AC systems. Moreover, the impact of using such high-power density cooling unit on the server room environment with restricted HVAC system is also brought to light. Environmental and human comfort parameters such as noise, air velocity, and ambient temperature are measured under various operation conditions and benchmarked against their ranges for human comfort as listed in ASHREE standards. At the end of this research, recommendations for best practice are provided along with areas of enhancement for the selected system. 
    more » « less
  5. Abstract Airside economizers lower the operating cost of data centers by reducing or eliminating mechanical cooling. It, however, increases the risk of reliability degradation of information technology (IT) equipment due to contaminants. IT Equipment manufacturers have tested equipment performance and guarantee the reliability of their equipment in environments within ISA 71.04-2013 severity level G1 and the ASHRAE recommended temperature-relative humidity (RH) envelope. IT Equipment manufacturers require data center operators to meet all the specified conditions consistently before fulfilling warranty on equipment failure. To determine the reliability of electronic hardware in higher severity conditions, field data obtained from real data centers are required. In this study, a corrosion classification coupon experiment as per ISA 71.04-2013 was performed to determine the severity level of a research data center (RDC) located in an industrial area of hot and humid Dallas. The temperature-RH excursions were analyzed based on time series and weather data bin analysis using trend data for the duration of operation. After some period, a failure was recorded on two power distribution units (PDUs) located in the hot aisle. The damaged hardware and other hardware were evaluated, and cumulative corrosion damage study was carried out. The hypothetical estimation of the end of life of components is provided to determine free air-cooling hours for the site. There was no failure of even a single server operated with fresh air-cooling shows that using evaporative/free air cooling is not detrimental to IT equipment reliability. This study, however, must be repeated in other geographical locations to determine if the contamination effect is location dependent. 
    more » « less