skip to main content


Title: #EngineersWeek: Broadening our Understanding of Community Engagement through Analysis of Twitter Use during the National Engineers Week.
Community engagement efforts have become an important avenue for raising public interest and know-how related to engineering. These efforts draw the young and the diverse into seeing engineering as a worthwhile profession. One such effort at the national level in the U.S. is the “National Engineers Week”. This is a week-long celebration held every February that consists of numerous events and activities organized for the general public with a focus towards students, women, and under-represented groups. In this paper, we examined this effort through the lens of social media and analyzed Twitter data collected for two hashtags used during the National Engineers Week 2017: “#eweek2017” and “#engineersweek”. Our dataset consisted of 6,583 original tweets and 10,885 retweets. To study the impact of the outreach we used three analytical approaches: descriptive analysis, content analysis, and network analysis. We found that the Twitter campaign participation was dominated by engineering companies and individual users followed by a limited participation of educational institutions, professional engineering associations, and non-profits. As opposed to other popular hashtag campaigns, not a single news media organization was identified as a participating user signaling a lower new media-driven propagation of the campaign among the public. From a content perspective, the tweets can be categorized as event promotion, showcasing employees of engineering companies, or encouraging and inspiring public (especially women and children) towards engineering. With the growing popularity of social media, community engagement efforts need to strategically leverage hashtags and other media elements for a broader impact.  more » « less
Award ID(s):
1707837
NSF-PAR ID:
10066212
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of 125th ASEE Annual Conference, Salt Lake City, USA.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Each year, significant investment of time and resources is made to improve diversity within engineering across a range of federal and state agencies, private/not-for-profit organizations, and foundations. In spite of decades of investments, efforts have not yielded desired returns - participation by minorities continues to lag at a time when STEM workforce requirements are increasing. In recent years a new stream of data has emerged - online social networks, including Twitter, Facebook, and Instagram - that act as a key sensor of social behavior and attitudes of the public. Almost 87% of the American population now participates in some form of social media activity. Consequently, social networking sites have become powerful indicators of social action and social media data has shown significant promise for studying many issues including public health communication, political campaign, humanitarian crisis, and, activism. We argue that social media data can likewise be leveraged to better understand and improve engineering diversity. As a case study to illustrate the viability of the approach, we present findings from a campaign, #ILookLikeAnEngineer (using Twitter data – 19,354 original tweets and 29,529 retweets), aimed at increasing gender diversity in the engineering workplace. The campaign provided a continuous momentum to the overall effort to increase diversity and novel ways of connecting with relevant audience. Our analysis demonstrates that diversity initiatives related to STEM attract voices from various entities including individuals, large corporations, media outlets, and community interest groups. 
    more » « less
  2. African Americans, Latinos/Latinas, and other traditionally underserved ethnic/racial groups are needed for the next generation of engineers, scientists, and STEM educators. Women of color (WOC), in particular, represent a tremendous untapped human capital that could further provide a much-needed diversity of perspective essential to sustain technological advantages and to promote positive academic climate. Recently engineering educators have questioned the STEM community commitment towards increasing the participation of WOC. Indeed, national reports of domestic students studying and completing STEM degrees show marginal improvement in broadening participation with significant lag in engineering, despite the known benefits of diversity. Therefore, more must be done by the STEM community to attract and retain WOC. For students of color, campus climate issues around race, class, and gender are critical components shaping their higher education learning environment. Research suggests hostile campus climates are associated with students of color leaving STEM fields before graduating. Such barriers can be more pronounced for WOC who often experience a “double bind” of race and gender marginalization when navigating the STEM culture. Therefore, it is important that educators understand experiences of WOC and what is needed to improve students’ experiences in order to minimize the performance gap in key indicators (e.g., retention, achievement, and persistence). We seek to address this STEM need through the guiding research question: “How does the double bind of race and gender impact the experience of women of color in engineering?” The data reported here is part of a larger, sequential mixed-methods study that is informed by the Womanist and intersectionality theoretical frameworks. For the first time, we introduce the Womanist Identity Attitude scale to engineering education research, which provides an efficient way to understand gender and racial identity development of WOC along with the intersection of identities. Intersectionality provides a means to produce scholarship that investigates the connection between social identity dimensions and educational conditions. Social identity models that adhere to intersectionality concepts acknowledge that multiple oppressed identities have a cumulative, not additive, impact. Although intersectionality is used to understand the experiences of students of color in higher education, few engineering education studies apply an intersectionality framework, particularly for WOC. After a short pilot study, we anticipate the survey results will generate three outcomes. First, the survey results will show what intersecting identities most impact the experience of WOC in engineering. Second, interview question and potential themes will be created by grouping results into clusters of intersectionality types or exemplars of intersecting identities. Finally, we will generate strategies to overcome the challenge of the double bind for WOC in engineering by examining the context and scope of intersecting identities emphasized by participants in the survey to. Overall, the results presented here will provide the foundation for a larger study that will lead to a deeper understanding of the challenges WOC face in the engineering culture and expose areas to improve inclusion efforts that target WOC. 
    more » « less
  3. African Americans, Latinos/Latinas, and other traditionally underserved ethnic/racial groups are needed for the next generation of engineers, scientists, and STEM educators. Women of color (WOC), in particular, represent a tremendous untapped human capital that could further provide a much-needed diversity of perspective essential to sustain technological advantages and to promote positive academic climate. Recently engineering educators have questioned the STEM community commitment towards increasing the participation of WOC. Indeed, national reports of domestic students studying and completing STEM degrees show marginal improvement in broadening participation with significant lag in engineering, despite the known benefits of diversity. Therefore, more must be done by the STEM community to attract and retain WOC. For students of color, campus climate issues around race, class, and gender are critical components shaping their higher education learning environment. Research suggests hostile campus climates are associated with students of color leaving STEM fields before graduating. Such barriers can be more pronounced for WOC who often experience a “double bind” of race and gender marginalization when navigating the STEM culture. Therefore, it is important that educators understand experiences of WOC and what is needed to improve students’ experiences in order to minimize the performance gap in key indicators (e.g., retention, achievement, and persistence). We seek to address this STEM need through the guiding research question: “How does the double bind of race and gender impact the experience of women of color in engineering?” The data reported here is part of a larger, sequential mixed-methods study that is informed by the Womanist and intersectionality theoretical frameworks. For the first time, we introduce the Womanist Identity Attitude scale to engineering education research, which provides an efficient way to understand gender and racial identity development of WOC along with the intersection of identities. Intersectionality provides a means to produce scholarship that investigates the connection between social identity dimensions and educational conditions. Social identity models that adhere to intersectionality concepts acknowledge that multiple oppressed identities have a cumulative, not additive, impact. Although intersectionality is used to understand the experiences of students of color in higher education, few engineering education studies apply an intersectionality framework, particularly for WOC. After a short pilot study, we anticipate the survey results will generate three outcomes. First, the survey results will show what intersecting identities most impact the experience of WOC in engineering. Second, interview question and potential themes will be created by grouping results into clusters of intersectionality types or exemplars of intersecting identities. Finally, we will generate strategies to overcome the challenge of the double bind for WOC in engineering by examining the context and scope of intersecting identities emphasized by participants in the survey to. Overall, the results presented here will provide the foundation for a larger study that will lead to a deeper understanding of the challenges WOC face in the engineering culture and expose areas to improve inclusion efforts that target WOC. 
    more » « less
  4. In 2017, the report Undergraduate Research Experiences for STEM Students from the National Academy of Science and Engineering and Medicine (NASEM) invited research programs to develop experiences that extend from disciplinary knowledge and skills education. This call to action asks to include social responsibility learning goals in ethical development, cultural issues in research, and the promotion of inclusive learning environments. Moreover, the Accreditation Board for Engineering and Technology (ABET), the National Academy of Engineering (NAE), and the National Science Foundation (NSF) all agree that social responsibility is a significant component of an engineer’s professional formation and must be a guiding force in their education. Social Responsibility involves the ethical obligation engineers have to society and the environment, including responsible conduct research (RCR), ethical decision-making, human safety, sustainability, pro bono work, social justice, and diversity. For this work, we explored the views of Social Responsibility in engineering students that could provide insight into developing formal and informal educational activities for future summer programs. In this exploratory multi-methods study, we investigated the following research question: What views of social responsibility are important for engineering students conducting scientific in an NSF Research Experiences for Undergraduates (REU)? The REU Site selected for this study was a college of engineering located at a major, public, comprehensive, land-grant research university. The Views of Social Responsibility of Scientists and Engineers (VSRoSE) was used to guide our research design. This validated instrument considers the following major social responsibility elements: 1) Consideration of societal consequences, 2) Protection of human welfare and safety, 3) Promotion of environmental sustainability, 4) Efforts to minimize risks, 5) Communication with the public, and 6) Service and Community engagement. Data collection was conducted at the end of their 10-week-long experience in Summer 2022 using Qualtrics. REU students were invited to complete an IRB-approved questionnaire, including collecting demographic data, the VSRoSE-validated survey, and open-ended questions. Open-ended questions were used to explore what experiences have influenced positive student views of social responsibility and provide rich information beyond the six elements of the VSRoSE instrument. The quantitative data from the VSRoSE is analyzed using SPSS. The qualitative data is analyzed by the research team using an inductive coding approach. In this coding process, the researchers derive codes from the data allowing the narrative or theory to emerge from the raw data itself, which is great for exploratory research. The results from this exploratory study will help to strategically initiate a formal and informal research education curriculum at the selected university. In addition, the results may serve as a way for REU administrators and faculty to create metrics of impact on their research activities regarding social responsibility. Finally, this work intends to provoke the ethics and research community to have a deeper conversation about the needs and strategies to educate this unique population of students. 
    more » « less
  5. Social media platforms are accused repeatedly of creating environments in which women are bullied and harassed. We argue that online aggression toward women aims to reinforce traditional feminine norms and stereotypes. In a mixed methods study, we find that this type of aggression on Twitter is common and extensive and that it can spread far beyond the original target. We locate over 2.9 million tweets in one week that contain instances of gendered insults (e.g., “bitch,” “cunt,” “slut,” or “whore”)—averaging 419,000 sexist slurs per day. The vast majority of these tweets are negative in sentiment. We analyze the social networks of the conversations that ensue in several cases and demonstrate how the use of “replies,” “retweets,” and “likes” can further victimize a target. Additionally, we develop a sentiment classifier that we use in a regression analysis to compare the negativity of sexist messages. We find that words in a message that reinforce feminine stereotypes inflate the negative sentiment of tweets to a significant and sizeable degree. These terms include those insulting someone’s appearance (e.g., “ugly”), intellect (e.g., “stupid”), sexual experience (e.g., “promiscuous”), mental stability (e.g., “crazy”), and age (“old”). Messages enforcing beauty norms tend to be particularly negative. In sum, hostile, sexist tweets are strategic in nature. They aim to promote traditional, cultural beliefs about femininity, such as beauty ideals, and they shame victims by accusing them of falling short of these standards. Harassment on social media constitutes an everyday, routine occurrence, with researchers finding 9,764,583 messages referencing bullying on Twitter over the span of two years (Bellmore et al. 2015). In other words, Twitter users post over 13,000 bullying-related messages on a daily basis. Forms of online aggression also carry with them serious, negative consequences. Repeated research documents that bullying victims suffer from a host of deleterious outcomes, such as low self-esteem (Hinduja and Patchin 2010), emotional and psychological distress (Ybarra et al. 2006), and negative emotions (Faris and Felmlee 2014; Juvonen and Gross 2008). Compared to those who have not been attacked, victims also tend to report more incidents of suicide ideation and attempted suicide (Hinduja and Patchin 2010). Several studies document that the targets of cyberbullying are disproportionately women (Backe et al. 2018; Felmlee and Faris 2016; Hinduja and Patchin 2010; Pew Research Center 2017), although there are exceptions depending on definitions and venues. Yet, we know little about the content or pattern of cyber aggression directed toward women in online forums. The purpose of the present research, therefore, is to examine in detail the practice of aggressive messaging that targets women and femininity within the social media venue of Twitter. Using both qualitative and quantitative analyses, we investigate the role of gender norm regulation in these patterns of cyber aggression. 
    more » « less