skip to main content


Title: Spacetime Supersymmetry in Low‐Dimensional Perturbative Heterotic Compactifications
Abstract

We study the constraints of spacetime supersymmetry for perturbative three– and two–dimensional Minkowski vacua of the critical heterotic string. Assuming a standard RNS construction of the spacetime supersymmetry generators and a compact unitary internal superconformal worldsheet theory, we describe the worldsheet structures associated to various spacetime supersymmetries. In three dimensions we show that there are no CFT surprises: each allowed spacetime supersymmetry is realized by a supergravity compactification. As a recent orbifold construction shows, in two dimensions there are more exotic possibilities, and we discuss how these fit into our analysis.

 
more » « less
Award ID(s):
1720480
NSF-PAR ID:
10067242
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Fortschritte der Physik
Volume:
66
Issue:
5
ISSN:
0015-8208
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We discuss a set of heterotic and type II string theory compactifications to$$1+1$$1+1dimensions that are characterized by factorized internal worldsheet CFTs of the form$$V_1\otimes \bar{V}_2$$V1V¯2, where$$V_1, V_2$$V1,V2are self-dual (super) vertex operator algebras. In the cases with spacetime supersymmetry, we show that the BPS states form a module for a Borcherds–Kac–Moody (BKM) (super)algebra, and we prove that for each model the BKM (super)algebra is a symmetry of genus zero BPS string amplitudes. We compute the supersymmetric indices of these models using both Hamiltonian and path integral formalisms. The path integrals are manifestly automorphic forms closely related to the Borcherds–Weyl–Kac denominator. Along the way, we comment on various subtleties inherent to these low-dimensional string compactifications.

     
    more » « less
  2. Abstract

    We study the phenomenology of a recent string construction with a quantum mechanically stable dark energy. A mild supersymmetry protects the vacuum energy but also allowsTeV scale superpartner masses. The construction is holographic in the sense that the 4D spacetime is generated from “spacetime pixels” originating from five‐branes wrapped over metastable five‐cycles of the compactification. The cosmological constant scales asin the pixel number. An instability in the construction leads to cosmic expansion. This also causes more five‐branes to wind up in the geometry, leading to a slowly decreasing cosmological constant which we interpret as an epoch of inflation followed by (pre‐)heating when a rare event occurs in which the number of pixels increases by an order one fraction. The sudden appearance of radiation triggers an exponential increase in the number of pixels. Dark energy has a time varying equation of state with, which is compatible with current bounds, and could be constrained further by future data releases. The pixelated nature of the Universe also implies a large‐lcutoff on the angular power spectrum of cosmological observables with. We also use this pixel description to study the thermodynamics of de Sitter space, finding rough agreement with effective field theory considerations.

     
    more » « less
  3. null (Ed.)
    A bstract We describe the construction of traversable wormholes with multiple mouths in four spacetime dimensions and discuss associated quantum entanglement. Our wormholes may be traversed between any pair of mouths. In particular, in the three-mouth case they have fundamental group F 2 (the free group on two generators). By contrast, connecting three regions A, B, C in pairs ( AB , BC , and AC ) using three separate wormholes would give fundamental group F 3 . Our solutions are asymptotically flat up to the presence of possible magnetic fluxes or cosmic strings that extend to infinity. The construction begins with a two-mouth traversable wormhole supported by backreaction from quantum fields. Inserting a sufficiently small black hole into its throat preserves traversability between the original two mouths. This black hole is taken to be the mouth of another wormhole connecting the original throat to a new distant region of spacetime. Making the new wormhole traversable in a manner similar to the original two-mouth wormhole provides the desired causal connections. From a dual field theory point of view, when AdS asymptotics are added to our construction, multiparty entanglement may play an important role in the traversability of the resulting wormhole. 
    more » « less
  4. Billinge, Simon (Ed.)
    Periodic space crystals are well established and widely used in physical sciences. Time crystals have been increasingly explored more recently, where time is disconnected from space. Periodic relativistic spacetime crystals on the other hand need to account for the mixing of space and time in special relativity through Lorentz transformation, and have been listed only in 2-dimensions. This work shows that there exists a transformation between the conventional Minkowski spacetime (MS) and what is referred to here as renormalized blended spacetime (RBS); they are shown to be equivalent descriptions of relativistic physics in flat spacetime. There are two elements to this reformulation of MS, namely, blending and renormalization. When observers in two inertial frames adopt each other’s clocks as their own, while retaining their original space coordinates; the observers become blended. This process reformulates the Lorentz boosts into Euclidean rotations while retaining the original spacetime hyperbola describing worldlines of constant spacetime length from the origin. By renormalizing the blended coordinates with an appropriate factor that is a function of the relative velocities between the various frames, the hyperbola is transformed into a Euclidean circle. With these two steps, one obtains the RBS coordinates complete with new light lines, but now with a Euclidean construction. One can now enumerate the RBS point and space groups in various dimensions with their mapping to the well-known space crystal groups. The RBS point group for flat isotropic RBS spacetime is identified to be that of cylinders in various dimensions: mm2 which is that of a rectangle in 2D, (∞⁄m)m which is that of a cylinder in 3D, and that of hypercylinder in 4D. An antisymmetry operation is introduced that can swap between space-like and time-like directions, leading to color spacetime groups. The formalism reveals RBS symmetries that are not readily apparent in the conventional MS formulation. Mathematica® script is provided for plotting the MS and RBS geometries discussed in the work. 
    more » « less
  5. Abstract

    Consider the geometric inverse problem: there is a set of delta-sources in spacetime that emit waves travelling at unit speed. If we know all the arrival times at the boundary cylinder of the spacetime, can we reconstruct the space, a Riemannian manifold with boundary? With a finite set of sources we can only hope to get an approximate reconstruction, and we indeed provide a discrete metric approximation to the manifold with explicit data-driven error bounds when the manifold is simple. This is the geometrization of a seismological inverse problem where we measure the arrival times on the surface of waves from an unknown number of unknown interior microseismic events at unknown times. The closeness of two metric spaces with a marked boundary is measured by a labeled Gromov–Hausdorff distance. If measurements are done for infinite time and spatially dense sources, our construction produces the true Riemannian manifold and the finite-time approximations converge to it in the metric sense

     
    more » « less