Semidefinite programs (SDP) are important in learning and combinatorial optimization with numerous applications. In pursuit of low-rank solutions and low complexity algorithms, we consider the Burer–Monteiro factorization approach for solving SDPs. For a large class of SDPs, upon random perturbation of the cost matrix, with high probability, we show that all approximate second-order stationary points are approximate global optima for the penalty formulation of appropriately rank-constrained SDPs, as long as the number of constraints scales sub-quadratically with the desired rank. Our result is based on a simple penalty function formulation of the rank-constrained SDP along with a smoothed analysis to avoid worst-case cost matrices. We particularize our results to two applications, namely, Max-Cut and matrix completion.
more »
« less
A penalty method for rank minimization problems in symmetric matrices
The problem of minimizing the rank of a symmetric positive semidefinite matrix subject to constraints can be cast equivalently as a semidefinite program with complementarity constraints (SDCMPCC). The formulation requires two positive semidefinite matrices to be complementary. This is a continuous and nonconvex reformulation of the rank minimization problem. We investigate calmness of locally optimal solutions to the SDCMPCC formulation and hence show that any locally optimal solution is a KKT point. We develop a penalty formulation of the problem. We present calmness results for locally optimal solutions to the penalty formulation. We also develop a proximal alternating linearized minimization (PALM) scheme for the penalty formulation, and investigate the incorporation of a momentum term into the algorithm. Computational results are presented.
more »
« less
- PAR ID:
- 10074021
- Date Published:
- Journal Name:
- Computational Optimization and Applications
- Volume:
- online first
- ISSN:
- 0926-6003
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Inverse kinematics (IK) is an important problem in robot control and motion planning; however, the nonlinearity of the map from joint angles to robot configurations makes the problem nonconvex. In this paper, we propose an inverse kinematics solver that works in the space of rotation matrices of the link reference frames rather than joint angles. To overcome the nonlinearity of the manifold of rotation matrices $\mathbf{SO}(3)$, we propose a semidefinite programming (SDP) relaxation of the kinematic constraints followed by a fixed-trace rank minimization via maximization of a convex function. Along the way, we show that the feasible set of an IK problem is exactly the intersection of a convex set and fixed-trace rank-1 matrices. Thanks to the use of matrices with fixed trace, our algorithm to obtain rank-1 solutions has guaranteed local convergence. Unlike some traditional solvers, our method does not require an initial guess, and can be applied to robots with closed kinematic chains without ad-hoc modifications such as splitting the kinematic chain. Compared to other work that performs SDP relaxation for IK problems, our formulation is simpler, and uses variables with smaller sizes. We validate our approach via simulations on a closed kinematic chain constituted by two robotic arms holding a box, comparing against a standard IK method.more » « less
-
null (Ed.)In this paper, we consider the decomposition of positive semidefinite matrices as a sum of rank one matrices. We introduce and investigate the properties of various measures of optimality of such decompositions. For some classes of positive semidefinite matrices, we give explicitly these optimal decompositions. These classes include diagonally dominant matrices and certain of their generalizations, 2 × 2, and a class of 3 × 3 matrices.more » « less
-
We consider a general formulation of the multiple change-point problem, in which the data is assumed to belong to a set equipped with a positive semidefinite kernel. We propose a model-selection penalty allowing to select the number of change points in Harchaoui and Cappe's kernel-based change-point detection method. The model-selection penalty generalizes non-asymptotic model-selection penalties for the change-in-mean problem with univariate data. We prove a non-asymptotic oracle inequality for the resulting kernel-based change-point detection method, whatever the unknown number of change points, thanks to a concentration result for Hilbert-space valued random variables which may be of independent interest. Experiments on synthetic and real data illustrate the proposed method, demonstrating its ability to detect subtle changes in the distribution of data.more » « less
-
This paper considers the interplay between semidefinite programming, matrix rank, and graph coloring. Karger, Motwani, and Sudan give a vector program in which a coloring of a graph can be encoded as a semidefinite matrix of low rank. By complementary slackness conditions of semidefinite programming, if an optimal dual solution has high rank, any optimal primal solution must have low rank. We attempt to characterize graphs for which we can show that the corresponding dual optimal solution must have rank high enough that the primal solution encodes a coloring. In the case of the original Karger, Motwani, and Sudan vector program, we show that any graph which is a $k$-tree has sufficiently high dual rank, and we can extract the coloring from the corresponding low-rank primal solution. We can also show that if a graph is not uniquely colorable, then no sufficiently high rank dual optimal solution can exist. This allows us to completely characterize the planar graphs for which dual optimal solutions have sufficiently high dual rank, since it is known that the uniquely colorable planar graphs are precisely the planar 3-trees. We then modify the semidefinite program to have an objective function with costs, and explore when we can create an objective function such that the optimal dual solution has sufficiently high rank. We show that it is always possible to construct such an objective function given the graph coloring. The construction of the objective function gives rise to heuristics for 4-coloring planar graphs. We enumerated all maximal planar graphs with an induced $K_4$ of up to 14 vertices; the heuristics successfully found a 4-coloring for 99.75\% of them. Our research was motivated by trying to use semidefinite programming to prove the four-color theorem, which states that every planar graph can be colored with four colors. There is an intriguing connection of the Karger-Motwani-Sudan semidefinite program with the Colin de Verdi\`ere graph invariant (and a corresponding conjecture of Colin de Verdi\`ere), in which matrices that have some similarities to the dual feasible matrices of the semidefinite program must have high rank in the case that graphs are of a certain type; for instance, planar graphs have rank that would imply that the primal solution of the semidefinite program encodes a 4-coloring.more » « less