skip to main content


Title: Sensitivity of the Hydrogen Epoch of Reionization Array and its build-out stages to one-point statistics from redshifted 21 cm observations
Foregrounds with polarization states that are not smooth functions of frequency present a challenge to HI Epoch of Reionization (EoR) power spectrum measurements if they are not cleanly separated from the desired Stokes I signal. The intrinsic polarization impurity of an antenna's electromagnetic response limits the degree to which components of the polarization state on the sky can be separated from one another, leading to the possibility that this frequency structure could be confused for HI emission. We investigate the potential of Faraday rotation by the Earth's ionosphere to provide a mechanism for both mitigation of, and systematic tests for, this contamination. Specifically, we consider the delay power spectrum estimator, which relies on the expectation that foregrounds will be separated from the cosmological signal by a clearly demarcated boundary in Fourier space, and is being used by the Hydrogen Epoch of Reionization Array (HERA) experiment. Through simulations of visibility measurements which include the ionospheric Faraday rotation calculated from real historical ionospheric plasma density data, we find that the incoherent averaging of the polarization state over repeated observations of the sky may attenuate polarization leakage in the power spectrum by a factor of 10 or more. Additionally, this effect provides a way to test for the presence of polarized foreground contamination in the EoR power spectrum estimate.  more » « less
Award ID(s):
1636646
NSF-PAR ID:
10074727
Author(s) / Creator(s):
Date Published:
Journal Name:
Monthly notices of the Royal Astronomical Society
Volume:
474
ISSN:
1365-2966
Page Range / eLocation ID:
4487-4499
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT We quantify the effect of radio frequency interference (RFI) on measurements of the 21-cm power spectrum during the Epoch of Reionization (EoR). Specifically, we investigate how the frequency structure of RFI source emission generates contamination in higher order wave modes, which is much more problematic than smooth-spectrum foreground sources. Using a relatively optimistic EoR model, we find that even a single relatively dim RFI source can overwhelm the EoR power spectrum signal of $\sim 10\, {\rm mK}^2$ for modes $0.1 \ \lt k \lt 2 \, h\, {\rm Mpc}^{-1}$. If the total apparent RFI flux density in the final power spectrum integration is kept below 1 mJy, an EoR signal resembling this optimistic model should be detectable for modes $k \lt 0.9\, h\, {\rm Mpc}^{-1}$, given no other systematic contaminants and an error tolerance as high as 10 per cent. More pessimistic models will be more restrictive. These results emphasize the need for highly effective RFI mitigation strategies for telescopes used to search for the EoR. 
    more » « less
  2. ABSTRACT The 21 cm transition from neutral hydrogen promises to be the best observational probe of the epoch of reionization (EoR). The main difficulty in measuring the 21 cm signal is the presence of bright foregrounds that require very accurate interferometric calibration. Closure quantities may circumvent the calibration requirements but may be, however, affected by direction-dependent effects, particularly antenna primary beam responses. This work investigates the impact of antenna primary beams affected by mutual coupling on the closure phase and its power spectrum. Our simulations show that primary beams affected by mutual coupling lead to a leakage of foreground power into the EoR window, which can be up to ∼104 times higher than the case where no mutual coupling is considered. This leakage is, however, essentially confined at k < 0.3 h Mpc−1 for triads that include 29 m baselines. The leakage magnitude is more pronounced when bright foregrounds appear in the antenna sidelobes, as expected. Finally, we find that triads that include mutual coupling beams different from each other have power spectra similar to triads that include the same type of mutual coupling beam, indicating that beam-to-beam variation within triads (or visibility pairs) is not the major source of foreground leakage in the EoR window. 
    more » « less
  3. ABSTRACT

    Radio interferometers aiming to measure the power spectrum of the redshifted 21 cm line during the Epoch of Reionization (EoR) need to achieve an unprecedented dynamic range to separate the weak signal from overwhelming foreground emissions. Calibration inaccuracies can compromise the sensitivity of these measurements to the effect that a detection of the EoR is precluded. An alternative to standard analysis techniques makes use of the closure phase, which allows one to bypass antenna-based direction-independent calibration. Similarly to standard approaches, we use a delay spectrum technique to search for the EoR signal. Using 94 nights of data observed with Phase I of the Hydrogen Epoch of Reionization Array (HERA), we place approximate constraints on the 21 cm power spectrum at z = 7.7. We find at 95 per cent confidence that the 21 cm EoR brightness temperature is ≤(372)2 ‘pseudo’ mK2 at 1.14 ‘pseudo’ h Mpc−1, where the ‘pseudo’ emphasizes that these limits are to be interpreted as approximations to the actual distance scales and brightness temperatures. Using a fiducial EoR model, we demonstrate the feasibility of detecting the EoR with the full array. Compared to standard methods, the closure phase processing is relatively simple, thereby providing an important independent check on results derived using visibility intensities, or related.

     
    more » « less
  4. Abstract

    The cross-correlation between the 21 cm field and the galaxy distribution is a potential probe of the Epoch of Reionization (EoR). The 21 cm signal traces neutral gas in the intergalactic medium and, on large spatial scales, this should be anticorrelated with the high-redshift galaxy distribution, which partly sources and tracks the ionized gas. In the near future, interferometers such as the Hydrogen Epoch of Reionization Array (HERA) are projected to provide extremely sensitive measurements of the 21 cm power spectrum. At the same time, the Nancy Grace Roman Space Telescope (Roman) will produce the most extensive catalog to date of bright galaxies from the EoR. Using seminumeric simulations of reionization, we explore the prospects for measuring the cross-power spectrum between the 21 cm and galaxy fields during the EoR. We forecast a 12σdetection between HERA and Roman, assuming an overlapping survey area of 500 deg2, redshift uncertainties ofσz= 0.01 (as expected for the high-latitude spectroscopic survey of Lyα-emitting galaxies), and an effective Lyαemitter duty cycle offLAE= 0.1. Thus the HERA–Roman cross-power spectrum may be used to help verify 21 cm detections from HERA. We find that the shot-noise in the galaxy distribution is a limiting factor for detection, and so supplemental observations using Roman should prioritize deeper observations, rather than covering a wider field of view. We have made a public GitHub repository containing key parts of the calculation, which accompanies this paper:https://github.com/plaplant/21cm_gal_cross_correlation.

     
    more » « less
  5. Abstract

    We present deep upper limits from the 2014 Murchison Widefield Array Phase I observing season, with a particular emphasis on identifying the spectral fingerprints of extremely faint radio frequency interference (RFI) contamination in the 21 cm power spectra (PS). After meticulous RFI excision involving a combination of theSSINSRFI flagger and a series of PS-based jackknife tests, our lowest upper limit on the Epoch of Reionization (EoR) 21 cm PS signal is Δ2≤ 1.61 × 104mK2atk= 0.258h Mpc−1at a redshift of 7.1 using 14.7 hr of data. By leveraging our understanding of how even fainter RFI is likely to contaminate the EoR PS, we are able to identify ultrafaint RFI signals in the cylindrical PS. Surprisingly this signature is most obvious in PS formed with less than 1 hr of data, but is potentially subdominant to other systematics in multiple-hour integrations. Since the total RFI budget in a PS detection is quite strict, this nontrivial integration behavior suggests a need to more realistically model coherently integrated ultrafaint RFI in PS measurements so that its potential contribution to a future detection can be diagnosed.

     
    more » « less