skip to main content


Title: Directed assembly of metal nanoparticles in polymer bilayers
The integration of layer-by-layer (LbL) and self-assembly methods has the potential to achieve precision assembly of nanocomposite materials. Knowledge of how nanoparticles move across and within stacked materials is critical for directing nanoparticle assembly. Here, we investigate nanoparticle self-assembly within two different LbL architectures: (1) a bilayer composed of two immiscible polymer thin-films, and (2) a bilayer composed of polymer and graphene that possesses a “hard-soft” interface. Polymer-grafted silver nanocubes (AgNCs) are employed as a model nanoparticle system for systematic experiments – characterizing both assembly rate and resulting morphologies – that examine how assembly is affected by the presence of an interface. We observe that polymer grafts can serve to anchor AgNCs at the bilayer interface and to decrease particle mobility, or can promote particle transfer between layers. We also find that polymer viscosity and polymer mixing parameters can be used as predictors of assembly rate and behavior. These results provide a pathway for designing more complex multilayered nanocomposites.  more » « less
Award ID(s):
1636356
NSF-PAR ID:
10075260
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Molecular Systems Design & Engineering
Volume:
3
Issue:
2
ISSN:
2058-9689
Page Range / eLocation ID:
390 to 396
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This work establishes a correlation between the selectivity of hydrogen-bonding interactions and the functionality of micelle-containing layer-by-layer (LbL) assemblies. Specifically, we explore LbL films formed by assembly of poly(methacrylic acid) (PMAA) and upper critical solution temperature block copolymer micelles (UCSTMs) composed of poly(acrylamide- co -acrylonitrile) P(AAm- co -AN) cores and polyvinylpyrrolidone (PVP) coronae. UCSTMs had a hydrated diameter of ∼380 nm with a transition temperature between 45 and 50 °C, regardless of solution pH. Importantly, micelles were able to hydrogen-bond with PMAA, with the critical interaction pH being temperature dependent. To better understand the thermodynamic nature of these interactions, in depth studies using isothermal titration calorimetry (ITC) were conducted. ITC reveals opposite signs of enthalpies for binding of PMAA with micellar coronae vs. with the cores. Moreover, ITC indicates that pH directs the interactions of PMAA with micelles, selectively enabling binding with the micellar corona at pH 4 or with both the corona and the core at pH 3. We then explore UCSTM/PMAA LbL assemblies and show that the two distinct modes of PMAA interaction with the micelles ( i.e. whether or not PMAA binds with the core) had significant effects on the film composition, structure, and functionality. Consistent with PMAA hydrogen bonding with the P(AAm- co -AN) micellar cores, a significantly higher fraction of PMAA was found within the films assembled at pH 3 compared to pH 4 by both spectroscopic ellipsometry and neutron reflectometry. Selective interaction of PMAA with PVP coronae of the assembled micelles, achieved by the emergence of partial ionization of PMAA at pH 4 was critical for preserving film functionality demonstrated as temperature-controlled swelling and release of a model small molecule, pyrene. The work done here can be applied to a multitude of assembled polymer systems in order to predict suppression/retention of their stimuli-responsive behavior. 
    more » « less
  2. Self-assembly of faceted nanoparticles is a promising route for fabricating nanomaterials; however, achieving low-dimensional assemblies of particles with tunable orientations is challenging. Here, we demonstrate that trapping surface-functionalized faceted nanoparticles at fluid–fluid interfaces is a viable approach for controlling particle orientation and facilitating their assembly into unique one- and two-dimensional superstructures. Using molecular dynamics simulations of polymer-grafted nanocubes in a polymer bilayer along with a particle-orientation classification method we developed, we show that the nanocubes can be induced into face-up, edge-up, or vertex-up orientations by tuning the graft density and differences in their miscibility with the two polymer layers. The orientational preference of the nanocubes is found to be governed by an interplay between the interfacial area occluded by the particle, the difference in interactions of the grafts with the two layers, and the stretching and intercalation of grafts at the interface. The resulting orientationally constrained nanocubes are then shown to assemble into a variety of unusual architectures, such as rectilinear strings, close-packed sheets, bilayer ribbons, and perforated sheets, which are difficult to obtain using other assembly methods. Our work thus demonstrates a versatile strategy for assembling freestanding arrays of faceted nanoparticles with possible applications in plasmonics, optics, catalysis, and membranes, where precise control over particle orientation and position is required. 
    more » « less
  3. Abstract

    2D/3D bilayer perovskite synthesized using sequential deposition methods has shown effectiveness in enhancing the stability of perovskite solar devices. However, these approaches present several limitations such as uncontrolled chemical processes, disordered interfacial states, and microscale heterogeneities that can chemically, structurally, and electronically compromise the performance of solar modules. Here, this work demonstrates an emulsion‐based self‐assembly approach using natural lipid biomolecules in a nonionic solution system to form a 0D/3D bilayer structure. The new capping layer is composed of 0D‐entity nanoparticles of perovskite encapsulated by a hydrophobic lipid membrane, analogous to a cell structure, formed through a molecular self‐assembly process. This 0D layer provides a strong water repellent characteristics, optimum interface microstructure, and excellent homogeneity that drives significant enhancement in stability. Solar modules with a large active area of 70 cm2fabricated using films comprising of 0D/3D bilayer structure are found to show consistent efficiency of >19% for 2800 h of continuous illumination in the air (60% relative humidity). This emulsion‐based self‐assembly approach is expected to have a transformative impact on the design and development of stable perovskite‐based devices.

     
    more » « less
  4. null (Ed.)
    Abstract This study successfully integrates acoustic patterning with the Two-Photon Polymerization (TPP) process for printing nanoparticle–polymer composite microstructures with spatially varied nanoparticle compositions. Currently, the TPP process is gaining increasing attention within the engineering community for the direct manufacturing of complex three-dimensional (3D) microstructures. Yet the full potential of TPP manufactured microstructures is limited by the materials used. This study aims to create and demonstrate a novel acoustic field-assisted TPP (A-TPP) process, which can instantaneously pattern and assemble nanoparticles in a liquid droplet, and fabricate anisotropic nanoparticle–polymer composites with spatially controlled particle–polymer material compositions. It was found that the biggest challenge in integrating acoustic particle patterning with the TPP process is that nanoparticles move upon laser irradiation due to the photothermal effect, and hence, the acoustic assembly is distorted during the photopolymerization process. To cure acoustic assembly of nanoparticles in the resin through TPP with the desired nanoparticle patterns, the laser power needs to be carefully tuned so that it is adequate for curing while low enough to prevent the photothermal effect. To address this challenge, this study investigated the threshold laser power for polymerization of TPP resin (Pthr) and photothermal instability of the nanoparticle (Pthp). Patterned nanoparticle–polymer composite microstructures were fabricated using the novel A-TPP process. Experimental results validated the feasibility of the developed acoustic field-assisted TPP process on printing anisotropic composites with spatially controlled material compositions. 
    more » « less
  5. Living systems are composed of a select number of biopolymers and minerals yet exhibit an immense diversity in materials properties. The wide-ranging characteristics, such as enhanced mechanical properties of skin and bone, or responsive optical properties derived from structural coloration, are a result of the multiscale, hierarchical structure of the materials. The fields of materials and polymer chemistry have leveraged equilibrium concepts in an effort to mimic the structure complex materials seen in nature. However, realizing the remarkable properties in natural systems requires moving beyond an equilibrium perspective. An alternative method to create materials with multiscale structures is to approach the issue from a kinetic perspective and utilize chemical processes to drive phase transitions. This Account features an active area of research in our group, reaction-induced phase transitions (RIPT), which uses chemical reactions such as polymerizations to induce structural changes in soft material systems. Depending on the type of phase transition (e.g., microphase versus macrophase separation), the resulting change in state will occur at different length scales (e.g., nm – μm), thus dictating the structure of the material. For example, the in situ formation of either a block copolymer or a homopolymer initially in a monomer mixture during a polymerization will drive nanoscale or macroscale transitions, respectively. Specifically, three different examples utilizing reaction-driven phase changes will be discussed: 1) in situ polymer grafting from block copolymers, 2) multiscale polymer nanocomposites, and 3) Lewis adduct-driven phase transitions. All three areas highlight how chemical changes via polymerizations or specific chemical binding result in phase transitions that lead to nanostructural and multiscale changes. Harnessing kinetic chemical processes to promote and control material structure, as opposed to organizing pre-synthesized molecules, polymers, or nanoparticles within a thermodynamic framework, is a growing area of interest. Trapping nonequilibrium states in polymer materials has been primarily focused from a polymer chain conformation viewpoint in which synthesized polymers are subjected to different thermal and processing conditions. The impact of reaction kinetics and polymerization rate on final polymer material structure is starting to be recognized as a new way to access different morphologies not available through thermodynamic means. Furthermore, kinetic control of polymer material structure is not specific to polymerizations and encompasses any chemical reaction that induce morphology transitions. Kinetically driven processes to dictate material structure directly impact a broad range of areas including separation membranes, biomolecular condensates, cell mobility, and the self-assembly of polymers and colloids. Advancing polymer material syntheses using kinetic principles such as RIPT opens new possibilities for dictating material structure and properties beyond what is currently available with traditional self-assembly techniques. 
    more » « less