skip to main content

This content will become publicly available on June 22, 2024

Title: Recent Advances in Cyberattack Detection and Mitigation Techniques for Renewable Photovoltaic Distributed Energy CPS
Cyberattacks targeted to the energy cyber-physical system (ECPS), also known as the smart grid, could interrupt the electricity supply with major ramifications. Attackers identify and exploit any vulnerable portion of the energy power grid, including the inverters with solar-powered photovoltaic (PV) panels. PV presents unique challenges as electricity consumers have also become providers of solar energy for utilities. As mandates require increased PV penetration across the world for positive environmental impacts, increased cyberattacks targeted at PV systems impact reliability and efficiency within the ECPS. The new technologies continuously being introduced to manage the ECPS and ensure bi-directional communications and energy flow between components also lead to more attack surfaces, system vulnerabilities, and heightened malicious attacks. Data integrity attacks are increasing within PV systems. In this paper, we present a survey of different methods that are proposed and explored for identifying and preventing cyberattacks targeted at PV systems. The attack detection methods include voltage control, data diodes, and voltage measurement algorithms. Furthermore, we present blockchain, cyber switching, and other attack mitigation techniques for PV systems.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
Computing Conference
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The fast-growing installation of solar PVs has a significant impact on the operation of distribution systems. Grid-tied solar inverters provide reactive power capability to support the voltage profile in a distribution system. In comparison with traditional inverters, smart inverters have the capability of real time remote control through digital communication interfaces. However, cyberattack has become a major threat with the deployment of Information and Communications Technology (ICT) in a smart grid. The past cyberattack incidents have demonstrated how attackers can sabotage a power grid through digital communication systems. In the worst case, numerous electricity consumers can experience a major and extended power outage. Unfortunately, tracking techniques are not efficient for today’s advanced communication networks. Therefore, a reliable cyber protection system is a necessary defense tool for the power grid. In this paper, a signature-based Intrusion Detection System (IDS) is developed to detect cyber intrusions of a distribution system with a high level penetration of solar energy. To identify cyberattack events, an attack table is constructed based on the Temporal Failure Propagation Graph (TFPG) technique. It includes the information of potential cyberattack patterns in terms of attack types and time sequence of anomaly events. Once the detected anomaly events are matched with any of the predefined attack patterns, it is judged to be a cyberattack. Since the attack patterns are distinguishable from other system failures, it reduces the false positive rate. To study the impact of cyberattacks on solar devices and validate the performance of the proposed IDS, a realistic Cyber-Physical System (CPS) simulation environment available at Virginia Tech (VT) is used to develop an interconnection between the cyber and power system models. The CPS model demonstrates how communication system anomalies can impact the physical system. The results of two example cyberattack test cases are obtained with the IEEE 13 node test feeder system and the power system simulator, DIgSILENT PowerFactory. 
    more » « less
  2. Abstract

    Expansion of distributed solar photovoltaic (PV) and natural gas‐fired generation capacity in the United States has put a renewed spotlight on methods and tools for power system planning and grid modernization. This article investigates the impact of increasing natural gas‐fired electricity generation assets on installed distributed solar PV systems in the Pennsylvania–New Jersey–Maryland (PJM) Interconnection in the United States over the period 2008–2018. We developed an empirical dynamic panel data model using the system‐generalized method of moments (system‐GMM) estimation approach. The model accounts for the impact of past and current technical, market and policy changes over time, forecasting errors, and business cycles by controlling for PJM jurisdictions‐level effects and year fixed effects. Using an instrumental variable to control for endogeneity, we concluded that natural gas does not crowd out renewables like solar PV in the PJM capacity market; however, we also found considerable heterogeneity. Such heterogeneity was displayed in the relationship between solar PV systems and electricity prices. More interestingly, we found no evidence suggesting any relationship between distributed solar PV development and nuclear, coal, hydro, or electricity consumption. In addition, considering policy effects of state renewable portfolio standards, net energy metering, differences in the PJM market structure, and other demand and cost‐related factors proved important in assessing their impacts on solar PV generation capacity, including energy storage as a non‐wire alternative policy technique.

    This article is categorized under:

    Photovoltaics > Economics and Policy

    Fossil Fuels > Climate and Environment

    Energy Systems Economics > Economics and Policy

    more » « less
  3. null (Ed.)
    Renewable portfolio standards are targeting high levels of variable solar photovoltaics (PV) in electric distribution systems, which makes reliability more challenging to maintain for distribution system operators (DSOs). Distributed energy resources (DERs), including smart, connected appliances and PV inverters, represent responsive grid resources that can provide flexibility to support the DSO in actively managing their networks to facilitate reliability under extreme levels of solar PV. This flexibility can also be used to optimize system operations with respect to economic signals from wholesale energy and ancillary service markets. Here, we present a novel hierarchical scheme that actively controls behind-the-meter DERs to reliably manage each unbalanced distribution feeder and exploits the available flexibility to ensure reliable operation and economically optimizes the entire distribution network. Each layer of the scheme employs advanced optimization methods at different timescales to ensure that the system operates within both grid and device limits. The hierarchy is validated in a large-scale realistic simulation based on data from the industry. Simulation results show that coordination of flexibility improves both system reliability and economics, and enables greater penetration of solar PV. Discussion is also provided on the practical viability of the required communications and controls to implement the presented scheme within a large DSO. 
    more » « less
  4. With the advent of remarkable development of solar power panel and inverter technology and focus on reducing greenhouse emissions, there is increased migration from fossil fuels to carbon-free energy sources (e.g., solar, wind, and geothermal). A new paradigm called Transactive Energy (TE) [3] has emerged that utilizes economic and control techniques to effectively manage Distributed Energy Resources (DERs). Another goal of TE is to improve grid reliability and efficiency. However, to evaluate various TE approaches, a comprehensive simulation tool is needed that is easy to use and capable of simulating the power-grid along with various grid operational scenarios that occur in the transactive energy paradigm. In this research, we present a web-based design and simulation platform (called a design studio) targeted toward evaluation of power-grid distribution system and transactive energy approaches [1]. The design studio allows to edit and visualize existing power-grid models graphically, create new power-grid network models, simulate those networks, and inject various scenario-specific perturbations to evaluate specific configurations of transactive energy simulations. The design studio provides (i) a novel Domain-Specific Modeling Language (DSML) using the Web-based Generic Modeling Environment (WebGME [4]) for the graphical modeling of power-grid, cyber-physical attacks, and TE scenarios, and (ii) a reusable cloud-hosted simulation backend using the Gridlab-D power-grid distribution system simulation tool [2]. 
    more » « less
  5. The controllers for a cyber-physical system may be impacted by sensor measurement cyberattacks, actuator signal cyberattacks, or both types of attacks. Prior work in our group has developed a theory for handling cyberattacks on process sensors. However, sensor and actuator cyberattacks have a different character from one another. Specifically, sensor measurement attacks prevent proper inputs from being applied to the process by manipulating the measurements that the controller receives, so that the control law plays a role in the impact of a given sensor measurement cyberattack on a process. In contrast, actuator signal attacks prevent proper inputs from being applied to a process by bypassing the control law to cause the actuators to apply undesirable control actions. Despite these differences, this manuscript shows that we can extend and combine strategies for handling sensor cyberattacks from our prior work to handle attacks on actuators and to handle cases where sensor and actuator attacks occur at the same time. These strategies for cyberattack-handling and detection are based on the Lyapunov-based economic model predictive control (LEMPC) and nonlinear systems theory. We first review our prior work on sensor measurement cyberattacks, providing several new insights regarding the methods. We then discuss how those methods can be extended to handle attacks on actuator signals and then how the strategies for handling sensor and actuator attacks individually can be combined to produce a strategy that is able to guarantee safety when attacks are not detected, even if both types of attacks are occurring at once. We also demonstrate that the other combinations of the sensor and actuator attack-handling strategies cannot achieve this same effect. Subsequently, we provide a mathematical characterization of the “discoverability” of cyberattacks that enables us to consider the various strategies for cyberattack detection presented in a more general context. We conclude by presenting a reactor example that showcases the aspects of designing LEMPC. 
    more » « less