We present a weighted approach to compute a maximum cardinality matching in an arbitrary bipartite graph. Our main result is a new algorithm that takes as input a weighted bipartite graph G(A cup B,E) with edge weights of 0 or 1. Let w <= n be an upper bound on the weight of any matching in G. Consider the subgraph induced by all the edges of G with a weight 0. Suppose every connected component in this subgraph has O(r) vertices and O(mr/n) edges. We present an algorithm to compute a maximum cardinality matching in G in O~(m(sqrt{w} + sqrt{r} + wr/n)) time. When all the edge weights are 1 (symmetrically when all weights are 0), our algorithm will be identical to the well-known Hopcroft-Karp (HK) algorithm, which runs in O(m sqrt{n}) time. However, if we can carefully assign weights of 0 and 1 on its edges such that both w and r are sub-linear in n and wr=O(n^{gamma}) for gamma < 3/2, then we can compute maximum cardinality matching in G in o(m sqrt{n}) time. Using our algorithm, we obtain a new O~(n^{4/3}/epsilon^4) time algorithm to compute an epsilon-approximate bottleneck matching of A,B subsetR^2 and an 1/(epsilon^{O(d)}}n^{1+(d-1)/(2d-1)}) poly log n time algorithm for computing epsilon-approximate bottleneck matching in d-dimensions. All previous algorithms take Omega(n^{3/2}) time. Given any graph G(A cup B,E) that has an easily computable balanced vertex separator for every subgraph G'(V',E') of size |V'|^{delta}, for delta in [1/2,1), we can apply our algorithm to compute a maximum matching in O~(mn^{delta/1+delta}) time improving upon the O(m sqrt{n}) time taken by the HK-Algorithm.
more »
« less
GraphRay: Distributed pathfinder network scaling
Pathfinder network scaling is a graph sparsification technique that has been popularly used due to its efficacy of extracting the “important” structure of a graph. However, existing algorithms to compute the pathfinder network (PFNET) of a graph have prohibitively expensive time complexity for large graphs: O(n 3 ) for the general case and O(n 2 log n) for a specific parameter setting, PFNET(r = ∞, q = n - 1), which is considered in many applications. In this paper, we introduce the first distributed technique to compute the pathfinder network with the specific parameters (r = ∞ and q = n - 1) of a large graph with millions of edges. The results of our experiments show our technique is scalable; it efficiently utilizes a parallel distributed computing environment, reducing the running times as more processing units are added.
more »
« less
- Award ID(s):
- 1741536
- PAR ID:
- 10078462
- Date Published:
- Journal Name:
- IEEE 7th Symposium on Large Data Analysis and Visualization (LDAV 2017)
- Page Range / eLocation ID:
- 74 to 83
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)We consider the classical Minimum Balanced Cut problem: given a graph $$G$$, compute a partition of its vertices into two subsets of roughly equal volume, while minimizing the number of edges connecting the subsets. We present the first {\em deterministic, almost-linear time} approximation algorithm for this problem. Specifically, our algorithm, given an $$n$$-vertex $$m$$-edge graph $$G$$ and any parameter $$1\leq r\leq O(\log n)$$, computes a $$(\log m)^{r^2}$$-approximation for Minimum Balanced Cut on $$G$$, in time $$O\left ( m^{1+O(1/r)+o(1)}\cdot (\log m)^{O(r^2)}\right )$$. In particular, we obtain a $$(\log m)^{1/\epsilon}$$-approximation in time $$m^{1+O(1/\sqrt{\epsilon})}$$ for any constant $$\epsilon$$, and a $$(\log m)^{f(m)}$$-approximation in time $$m^{1+o(1)}$$, for any slowly growing function $$m$$. We obtain deterministic algorithms with similar guarantees for the Sparsest Cut and the Lowest-Conductance Cut problems. Our algorithm for the Minimum Balanced Cut problem in fact provides a stronger guarantee: it either returns a balanced cut whose value is close to a given target value, or it certifies that such a cut does not exist by exhibiting a large subgraph of $$G$$ that has high conductance. We use this algorithm to obtain deterministic algorithms for dynamic connectivity and minimum spanning forest, whose worst-case update time on an $$n$$-vertex graph is $$n^{o(1)}$$, thus resolving a major open problem in the area of dynamic graph algorithms. Our work also implies deterministic algorithms for a host of additional problems, whose time complexities match, up to subpolynomial in $$n$$ factors, those of known randomized algorithms. The implications include almost-linear time deterministic algorithms for solving Laplacian systems and for approximating maximum flows in undirected graphs.more » « less
-
Given a set P of n points in the plane, the unit-disk graph Gr(P) with respect to a parameter r is an undirected graph whose vertex set is P such that an edge connects two points p, q in P if the Euclidean distance between p and q is at most r (the weight of the edge is 1 in the unweighted case and is the distance between p and q in the weighted case). Given a value \lambda>0 and two points s and t of P, we consider the following reverse shortest path problem: computing the smallest r such that the shortest path length between s and t in Gr(P) is at most \lambda. In this paper, we present an algorithm of O(\lfloor \lambda \rfloor \cdot n log n) time and another algorithm of O(n^{5/4} log^{7/4} n) time for the unweighted case, as well as an O(n^{5/4} log^{5/2} n) time algorithm for the weighted case. We also consider the L1 version of the problem where the distance of two points is measured by the L1 metric; we solve the problem in O(n log^3 n) time for both the unweighted and weighted cases.more » « less
-
We propose distributed scheduling algorithms that guarantee a constant fraction of the maximum throughput for typical wireless topologies, and have O(1) delay and complexity in the network size. Our algorithms resolve collisions among pairs of conflicting nodes by assigning a master-slave hierarchy. When the master-slave hierarchy is chosen randomly, our algorithm matches the throughput performance of the maximal scheduling policies, with a complexity and delay that do not scale with network size. When the master-slave hierarchy is chosen based on the network topology, the throughput performance of our algorithm is characterized by a parameter of the conflict graph called the master-interference degree. For commonly-used conflict-graph topologies, our results lead to the best known throughput guarantees among the algorithms that have O(1) delay and complexity. Numerical results indicate that our algorithms outperform the existing O(1) complexity algorithms like Q-CSMA.more » « less
-
null (Ed.)We study several fundamental problems in the k-machine model, a message-passing model for large-scale distributed computations where k ≥ 2 machines jointly perform computations on a large input of size N, (typically, N ≫ k). The input is initially partitioned (randomly or in a balanced fashion) among the k machines, a common implementation in many real-world systems. Communication is point-to-point, and the goal is to minimize the number of communication rounds of the computation. Our main result is a general technique for designing efficient deterministic distributed algorithms in the k-machine model using PRAM algorithms. Our technique works by efficiently simulating PRAM algorithms in the k-machine model in a deterministic way. This simulation allows us to arrive at new algorithms in the k-machine model for some problems for which no efficient k-machine algorithms are known before and also improve on existing results in the k-machine model for some problems. While our simulation allows us to obtain k-machine algorithms for any problem with a known PRAM algorithm, we mainly focus on graph problems. For an input graph on n vertices and m edges, we obtain Õ(m/k 2 ) round 4 algorithms for various graph problems such as r-connectivity for r = 1, 2, 3, 4, minimum spanning tree (MST), maximal independent set (MIS), (Δ + 1)-coloring, maximal matching, ear decomposition, and spanners under the assumption that the edges of the input graph are partitioned (randomly, or in an arbitrary, but balanced, fashion) among the k machines. For problems such as connectivity and MST, the above bound is (essentially) the best possible (up to logarithmic factors). Our simulation technique allows us to obtain the first known efficient deterministic algorithms in the k-machine model for other problems with known deterministic PRAM algorithms.more » « less
An official website of the United States government

