skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ion Pair Integrated Organic‐Inorganic Hybrid Electrolyte Network for Solid‐State Lithium Ion Batteries
Abstract A class of organic‐inorganic hybrid electrolyte with ion pair integrated network (X‐POSS‐IL‐LiTFSI) has been prepared by crosslinking of oligomeric octasilsesquioxanes grafted with imidazolium‐based ionic liquids for solid state lithium ion battery applications. X‐POSS‐IL‐LiTFSI is thermally stable and highly amorphous, and shows high ionic conductivities and excellent electrochemical stability. With further immobilization of a small fraction of ionic liquid, the ionic conductivity of X‐POSS‐IL‐LiTFSI has been significantly improved, e. g. 1.4×10−4 S/cm at ambinet temperature, to the level required by the practical battery applications, while maintaining the demensional integity. The coin cells of lithium batteries with the plasticized X‐POSS‐IL‐LiTFSI electrolytes exhibit high specific capacities at both ambient and elevated temperatures.  more » « less
Award ID(s):
1704173
PAR ID:
10080410
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Energy Technology
Volume:
6
Issue:
12
ISSN:
2194-4288
Page Range / eLocation ID:
p. 2319-2325
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Electrochemical energy storage is a cost-effective, sustainable method for storing and delivering energy gener- ated from renewable resources. Among electrochemical energy storage devices, the lithium-ion battery (LIB) has dominated due to its high energy and power density. The success of LIBs has generated increased interest in sodium-ion battery (NaB) technology amid concerns of the sustainability and cost of lithium resources. In recent years, numerous studies have shown that sodium-ion solid-state electrolytes (NaSEs) have considerable potential to enable new cell chemistries that can deliver superior electrochemical performance to liquid-electrolyte-based NaBs. However, their commercial implementation is hindered by slow ionic transport at ambient and chemical/ mechanical incompatibility at interfaces. In this review, various NaSEs are first characterized based on individual crystal structures and ionic conduction mechanisms. Subsequently, selected methods of modifying interfaces in sodium solid-state batteries (NaSSBs) are covered, including anode wetting, ionic liquid (IL) addition, and composite polymer electrolytes (CPEs). Finally, examples are provided of how these techniques improve cycle life and rate performance of different cathode materials including sulfur, oxide, hexacyanoferrate, and phosphate-type. A focus on interfacial modification and optimization is crucial for realizing next-generation batteries. Thus, the novel methods reviewed here could pave the way toward a NaSSB capable of with- standing the high current and cycle life demands of future applications. 
    more » « less
  2. Optimizing lithium-ion battery (LIB) electrolytes is essential for high-current applications such as electric vehicles, yet experimental techniques to characterize the complex structural dynamics within these electrolytes are limited. These dynamics are responsible for Li+ transport. In this study, we used ultrafast infrared spectroscopy to measure chemical exchange, spectral diffusion, and solvation structures across a wide range of lithium concentrations in propylene carbonate-based LiTFSI (lithium bis(trifluoromethanesulfonimide) electrolytes, with the CN stretch of phenyl selenocyanate as the long-lived vibrational probe. Phenyl selenocyanate is shown to be an excellent dynamical surrogate for propylene carbonate in Li+ solvation clusters. A strong correlation between exchange times and ionic conductivity was observed. This correlation and other observations suggest structural diffusion as the primary transport mechanism rather than vehicular diffusion. Additionally, spectral diffusion observables measured by the probe were directly linked to the de-solvation dynamics of the Li+ clusters, as supported by density functional theory and molecular dynamics simulations. These findings provide detailed molecular-level insights into LIB electrolytes’ transport dynamics and solvation structures, offering rational design pathways to advanced electrolytes for next-generation LIBs. 
    more » « less
  3. Abstract Organic semiconductors based on liquid crystal (LC) molecules have attracted increasing interest. In this work, two linear LCs based on 2,5‐bis(thien‐2‐yl)thieno[3,2‐b]thiophene (BTTT) mesogen are designed and synthesized, including BTTT/dEO3 with two symmetrically attached tri(ethylene oxide) groups and BTTT/mEO6 with one asymmetrically attached hexa(ethylene oxide) group. These two molecules have comparable functional‐group compositions but different molecular geometries, leading to their moderately different material performances. Both LCs show smectic mesophases with relatively low transition temperatures as confirmed by differential scanning calorimetry and polarized optical microscopy. A combination of experimental grazing incidence wide‐angle X‐ray scattering and molecular dynamics (MD) simulations reveals a herringbone packing motif of BTTT segments in both LCs while a smaller molecular tilt angle in BTTT/mEO6. Ionic conductivities are measured by doping LCs with different amounts of ionic dopants, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). BTTT/mEO6 shows better smectic phase stability to higher LiTFSI doping ratios. Both LCs exhibit similar ionic conductivities in the smectic phases, but BTTT/mEO6 outperforms BTTT/dEO3 by a factor of three in the amorphous phase at higher temperatures. MD simulations, performed to examine the ion solvation environment, reveal that BTTT/mEO6 is more efficient in coordinating Li‐ions and screening their interactions with TFSI‐ions which further promote ionic transport. 
    more » « less
  4. Abstract A new concentrated ternary salt ether‐based electrolyte enables stable cycling of lithium metal battery (LMB) cells with high‐mass‐loading (13.8 mg cm−2, 2.5 mAh cm−2) NMC622 (LiNi0.6Co0.2Mn0.2O2) cathodes and 50 μm Li anodes. Termed “CETHER‐3,” this electrolyte is based on LiTFSI, LiDFOB, and LiBF4with 5 vol% fluorinated ethylene carbonate in 1,2‐dimethoxyethane. Commercial carbonate and state‐of‐the‐art binary salt ether electrolytes were also tested as baselines. With CETHER‐3, the electrochemical performance of the full‐cell battery is among the most favorably reported in terms of high‐voltage cycling stability. For example, LiNixMnyCo1–x–yO2(NMC)‐Li metal cells retain 80% capacity at 430 cycles with a 4.4 V cut‐off and 83% capacity at 100 cycles with a 4.5 V cut‐off (charge at C/5, discharge at C/2). According to simulation by density functional theory and molecular dynamics, this favorable performance is an outcome of enhanced coordination between Li+and the solvent/salt molecules. Combining advanced microscopy (high‐resolution transmission electron microscopy, scanning electron microscopy) and surface science (X‐ray photoelectron spectroscopy, time‐of‐fight secondary ion mass spectroscopy, Fourier‐transform infrared spectroscopy, Raman spectroscopy), it is demonstrated that a thinner and more stable cathode electrolyte interphase (CEI) and solid electrolyte interphase (SEI) are formed. The CEI is rich in lithium sulfide (Li2SO3), while the SEI is rich in Li3N and LiF. During cycling, the CEI/SEI suppresses both the deleterious transformation of the cathode R‐3m layered near‐surface structure into disordered rock salt and the growth of lithium metal dendrites. 
    more » « less
  5. Abstract Despite significant interest toward solid‐state electrolytes owing to their superior safety in comparison to liquid‐based electrolytes, sluggish ion diffusion and high interfacial resistance limit their application in durable and high‐power density batteries. Here, a novel quasi‐solid Li+ion conductive nanocomposite polymer electrolyte containing black phosphorous (BP) nanosheets is reported. The developed electrolyte is successfully cycled against Li metal (over 550 h cycling) at 1 mA cm−2at room temperature. The cycling overpotential is dropped by 75% in comparison to BP‐free polymer composite electrolyte indicating lower interfacial resistance at the electrode/electrolyte interfaces. Molecular dynamics simulations reveal that the coordination number of Li+ions around (trifluoromethanesulfonyl)imide (TFSI) pairs and ethylene‐oxide chains decreases at the Li metal/electrolyte interface, which facilitates the Li+transport through the polymer host. Density functional theory calculations confirm that the adsorption of the LiTFSI molecules at the BP surface leads to the weakening of N and Li atomic bonding and enhances the dissociation of Li+ions. This work offers a new potential mechanism to tune the bulk and interfacial ionic conductivity of solid‐state electrolytes that may lead to a new generation of lithium polymer batteries with high ionic conduction kinetics and stable long‐life cycling. 
    more » « less