skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Narrowband Photo‐Thermoelectric Detector Using Photonic Crystal
Abstract Here, a wavelength‐specific photo‐thermoelectric (PTE) device is reported that achieves narrowband optical absorption and thermoelectric conversion functions using a stack of thin films on a grating‐patterned substrate. Conventional PTE devices are broadband with the absorption of electromagnetic radiation from ultraviolet to terahertz. There are demands for PTE devices that can exhibit narrowband response at a desired wavelength. Here, the narrowband PTE device consists of a photonic crystal (PC) filter with metal cladding and a thin‐film thermocouple. The PC‐PTE design is investigated numerically to illustrate the underlying energy conversion mechanism. The device is fabricated using nanoreplica molding followed by coating of thin films. The fabricated metal‐cladding PC resonator exhibits a narrowband optical absorption with a resonant absorption coefficient of 85.4% and full‐width‐half‐maximum of 14.8 nm in the visible wavelength range. The PTE measurements show that the thermoelectric output is sensitive to the coupling of incident light and guided‐mode resonance modes. Illuminated under the resonant condition, the PTE device exhibits a responsivity and noise equivalent power of 0.26 V W−1and 7.5 nW Hz−1/2, respectively. This PC‐PTE technology has the unique attributes of narrowband detection, large surface area, and low cost for the potential application in sensors, optical spectroscopy, and imaging.  more » « less
Award ID(s):
1653673
PAR ID:
10080700
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Optical Materials
Volume:
7
Issue:
3
ISSN:
2195-1071
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Pyroelectric detectors are often broadband and require external filters for wavelength‐specific applications. This paper reports a tunable, narrowband, and lightweight pyroelectric infrared detector built upon a flexible membrane of As2S3−Ag−P(VDF‐TrFE) with subwavelength grating, which is capable of both on‐chip filtering and photopyroelectric energy conversion. The top surface of this hybrid membrane is a corrugated As2S3−Ag film contributing to narrowband light absorption in the near‐infrared (NIR) regime, and the bottom part is a polyvinylidene fluoride‐trifluoroethylene (PVDF‐TrFE) membrane for the conversion of the absorbed light to an electrical signal. Uniquely, applying a bias voltage to the PVDF‐TrFE membrane enables the tuning of the device's absorption and pyroelectric characteristics owing to the piezoelectrically induced mechanical bending. The resonator exhibited a resonant absorption coefficient of 80% and a full‐width‐half‐maximum of 15 nm within the NIR, a responsivity of 1.4 mV mW−1, and an equivalent noise power of 13 µW Hz−1/2at 1560 nm. By applying a 15‐V bias to the PVDF‐TrFE membrane, the absorption coefficient decreased to 18% due to the change in the grating period and incident angle. The narrowband and tunable features of the As2S3−Ag−P(VDF‐TrFE) pyroelectric detector will benefit a variety of potential applications in sensors, optical spectroscopy, and imaging. 
    more » « less
  2. We report on the structural, chemical, and optical properties of titanium sesquioxide Ti2O3 thin films on single-crystal sapphire substrates by pulsed laser deposition. The thin film of Ti2O3 on sapphire exhibits light absorption of around 25%–45% in the wavelength range of 2–10 μm. Here, we design an infrared photodetector structure based on Ti2O3, enhanced by a resonant metasurface, to improve its light absorption in mid-wave and long-wave infrared windows. We show that light absorption in the mid-wave infrared window (wavelength 3–5 μm) in the active Ti2O3 layer can be significantly enhanced from 30%–40% to more than 80% utilizing a thin resonant metasurface made of low-loss silicon, facilitating efficient scattering in the active layer. Furthermore, we compare the absorptance of the Ti2O3 layer with that of conventional semiconductors, such as InSb, InAs, and HgCdTe, operating in the infrared range with a wavelength of 2–10 μm and demonstrate that the absorption in the Ti2O3 film is significantly higher than in these conventional semiconductors due to the narrow-bandgap characteristics of Ti2O3. The proposed designs can be used to tailor the wavelengths of photodetection across the near- and mid-infrared ranges. 
    more » « less
  3. Abstract Thermoelectric generators are an environmentally friendly and reliable solid‐state energy conversion technology. Flexible and low‐cost thermoelectric generators are especially suited to power flexible electronics and sensors using body heat or other ambient heat sources. Bismuth telluride (Bi2Te3) based thermoelectric materials exhibit their best performance near room temperature making them an ideal candidate to power wearable electronics and sensors using body heat. In this report, Bi2Te3thin films are deposited on a flexible polyimide substrate using low‐cost and scalable manufacturing methods. The synthesized Bi2Te3nanocrystals have a thickness of 35 ± 15 nm and a lateral dimension of 692 ± 186 nm. Thin films fabricated from these nanocrystals exhibit a peak power factor of 0.35 mW m−1·K−2at 433 K, which is among the highest reported values for flexible thermoelectric films. In order to evaluate the flexibility of the thin films, static and dynamic bending tests are performed while monitoring the change in electrical resistivity. After 1000 bending cycles over a 50 mm radius of curvature, the change in electrical resistance of the film is 23%. Using Bi2Te3solutions, the ability to print thermoelectric thin films with an aerosol jet printer is demonstrated, highlighting the potential of additive manufacturing techniques for fabricating flexible thermoelectric generators. 
    more » « less
  4. Abstract Organized nano‐ and microstructures of molecular semiconductors display interesting optical and photonic properties, and enhanced charge carrier mobilities, as compared to disordered thin films. However, known directed‐growth and self‐organization strategies cannot create structured molecular heterojunctions and cannot be practically incorporated into existing device fabrication routines to create large‐area optoelectronic devices. Here, an ultrathin (<2 nm) seed layer of the compound coronene creates 1D nanostructures of an electron‐transporting molecule (IFD) is shown, which possesses an intrinsic proclivity to form disordered thin films in the absence of the seed layer. It is revealed that nanostructured IFD films exhibit enhanced light absorption and emission, and greater electron mobilities, as compared to amorphous counterparts. This seed layer strategy creates uniform IFD nanowires over large areas of up to 18 mm2at low processing temperatures. Notably, the coronene seed layer creates IFD nanowires when applied over either oxide surfaces or predeposited organic layers, meaning that this structuring approach can be integrated into diode manufacturing routines to realize large‐area flexible optoelectronic devices. Flexible organic light‐emitting diodes and fullerene‐free organic solar cells containing IFD nanowires in the photoactive layer to demonstrate that molecular nanostructures can lead to robust, large‐area device arrays on flexible substrates being fabricated. 
    more » « less
  5. Thin-film lithium niobate is an attractive integrated photonics platform due to its low optical loss and favorable optical nonlinear and electro-optic properties. However, in applications such as second harmonic generation, frequency comb generation, and microwave-to-optics conversion, the device performance is strongly impeded by the photorefractive effect inherent in thin-film lithium niobate. In this paper, we show that the dielectric cladding on a lithium niobate microring resonator has a significant influence on the photorefractive effect. By removing the dielectric cladding layer, the photorefractive effect in lithium niobate ring resonators can be effectively mitigated. Our work presents a reliable approach to control the photorefractive effect on thin-film lithium niobate and will further advance the performance of integrated classical and quantum photonic devices based on thin-film lithium niobate. 
    more » « less