skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: A Narrowband Photo‐Thermoelectric Detector Using Photonic Crystal
Abstract

Here, a wavelength‐specific photo‐thermoelectric (PTE) device is reported that achieves narrowband optical absorption and thermoelectric conversion functions using a stack of thin films on a grating‐patterned substrate. Conventional PTE devices are broadband with the absorption of electromagnetic radiation from ultraviolet to terahertz. There are demands for PTE devices that can exhibit narrowband response at a desired wavelength. Here, the narrowband PTE device consists of a photonic crystal (PC) filter with metal cladding and a thin‐film thermocouple. The PC‐PTE design is investigated numerically to illustrate the underlying energy conversion mechanism. The device is fabricated using nanoreplica molding followed by coating of thin films. The fabricated metal‐cladding PC resonator exhibits a narrowband optical absorption with a resonant absorption coefficient of 85.4% and full‐width‐half‐maximum of 14.8 nm in the visible wavelength range. The PTE measurements show that the thermoelectric output is sensitive to the coupling of incident light and guided‐mode resonance modes. Illuminated under the resonant condition, the PTE device exhibits a responsivity and noise equivalent power of 0.26 V W−1and 7.5 nW Hz−1/2, respectively. This PC‐PTE technology has the unique attributes of narrowband detection, large surface area, and low cost for the potential application in sensors, optical spectroscopy, and imaging.

 
more » « less
Award ID(s):
1653673
PAR ID:
10080700
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Optical Materials
Volume:
7
Issue:
3
ISSN:
2195-1071
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A solid‐state thermoelectric device is attractive for diverse technological areas such as cooling, power generation and waste heat recovery with unique advantages of quiet operation, zero hazardous emissions, and long lifetime. With the rapid growth of flexible electronics and miniature sensors, the low‐cost flexible thermoelectric energy harvester is highly desired as a potential power supply. Herein, a flexible thermoelectric copper selenide (Cu2Se) thin film, consisting of earth‐abundant elements, is reported. The thin film is fabricated by a low‐cost and scalable spin coating process using ink solution with a truly soluble precursor. The Cu2Se thin film exhibits a power factor of 0.62 mW/(m K2) at 684 K on rigid Al2O3substrate and 0.46 mW/(m K2) at 664 K on flexible polyimide substrate, which is much higher than the values obtained from other solution processed Cu2Se thin films (<0.1 mW/(m K2)) and among the highest values reported in all flexible thermoelectric films to date (≈0.5 mW/(m K2)). Additionally, the fabricated thin film shows great promise to be integrated with the flexible electronic devices, with negligible performance change after 1000 bending cycles. Together, the study demonstrates a low‐cost and scalable pathway to high‐performance flexible thin film thermoelectric devices from relatively earth‐abundant elements.

     
    more » « less
  2. Abstract

    Pyroelectric detectors are often broadband and require external filters for wavelength‐specific applications. This paper reports a tunable, narrowband, and lightweight pyroelectric infrared detector built upon a flexible membrane of As2S3−Ag−P(VDF‐TrFE) with subwavelength grating, which is capable of both on‐chip filtering and photopyroelectric energy conversion. The top surface of this hybrid membrane is a corrugated As2S3−Ag film contributing to narrowband light absorption in the near‐infrared (NIR) regime, and the bottom part is a polyvinylidene fluoride‐trifluoroethylene (PVDF‐TrFE) membrane for the conversion of the absorbed light to an electrical signal. Uniquely, applying a bias voltage to the PVDF‐TrFE membrane enables the tuning of the device's absorption and pyroelectric characteristics owing to the piezoelectrically induced mechanical bending. The resonator exhibited a resonant absorption coefficient of 80% and a full‐width‐half‐maximum of 15 nm within the NIR, a responsivity of 1.4 mV mW−1, and an equivalent noise power of 13 µW Hz−1/2at 1560 nm. By applying a 15‐V bias to the PVDF‐TrFE membrane, the absorption coefficient decreased to 18% due to the change in the grating period and incident angle. The narrowband and tunable features of the As2S3−Ag−P(VDF‐TrFE) pyroelectric detector will benefit a variety of potential applications in sensors, optical spectroscopy, and imaging.

     
    more » « less
  3. Abstract

    Thermoelectric generators are an environmentally friendly and reliable solid‐state energy conversion technology. Flexible and low‐cost thermoelectric generators are especially suited to power flexible electronics and sensors using body heat or other ambient heat sources. Bismuth telluride (Bi2Te3) based thermoelectric materials exhibit their best performance near room temperature making them an ideal candidate to power wearable electronics and sensors using body heat. In this report, Bi2Te3thin films are deposited on a flexible polyimide substrate using low‐cost and scalable manufacturing methods. The synthesized Bi2Te3nanocrystals have a thickness of 35 ± 15 nm and a lateral dimension of 692 ± 186 nm. Thin films fabricated from these nanocrystals exhibit a peak power factor of 0.35 mW m−1·K−2at 433 K, which is among the highest reported values for flexible thermoelectric films. In order to evaluate the flexibility of the thin films, static and dynamic bending tests are performed while monitoring the change in electrical resistivity. After 1000 bending cycles over a 50 mm radius of curvature, the change in electrical resistance of the film is 23%. Using Bi2Te3solutions, the ability to print thermoelectric thin films with an aerosol jet printer is demonstrated, highlighting the potential of additive manufacturing techniques for fabricating flexible thermoelectric generators.

     
    more » « less
  4. We demonstrate post-fabrication target-wavelength trimming with a gallium phosphide on a silicon nitride integrated photonic platform using controlled electron-beam exposure of hydrogen silsesquioxane cladding. A linear relationship between the electron-beam exposure dose and resonant wavelength red-shift enables deterministic, individual trimming of multiple devices on the same chip to within 30 pm of a single target wavelength. Second harmonic generation from telecom to near infrared at a target wavelength is shown in multiple devices with quality factors on the order of 104. Post-fabrication tuning is an essential tool for targeted wavelength applications including quantum frequency conversion.

     
    more » « less
  5. Abstract

    The large‐scale growth of semiconducting thin films on insulating substrates enables batch fabrication of atomically thin electronic and optoelectronic devices and circuits without film transfer. Here an efficient method to achieve rapid growth of large‐area monolayer MoSe2films based on spin coating of Mo precursor and assisted by NaCl is reported. Uniform monolayer MoSe2films up to a few inches in size are obtained within a short growth time of 5 min. The as‐grown monolayer MoSe2films are of high quality with large grain size (up to 120 µm). Arrays of field‐effect transistors are fabricated from the MoSe2films through a photolithographic process; the devices exhibit high carrier mobility of ≈27.6 cm2V–1s–1and on/off ratios of ≈105. The findings provide insight into the batch production of uniform thin transition metal dichalcogenide films and promote their large‐scale applications.

     
    more » « less