skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Assessing Risk from Cascading Blackouts Given Correlated Component Failures
Despite the infrequent occurrence of cascading power failures, their large sizes and enormous social costs mean that they contribute substantially to the overall risk to society from power failures in the grid. Therefore it is important to accurately understand the risk associated with such events. A cascading event may be triggered by a small subset of k components failing simultaneously or in rapid succession. While most prior work, including our own work into an efficient “Random Chemistry” method for risk analysis, has assumed that components fail independently, this paper proposes a method for deriving correlated outage probabilities such that pairs of branches that are proximate in space are more likely to fail together than distant ones. Combining Random Chemistry risk analysis with this approach to correlated outage probabilities shows that overall blackout risk can greatly increase with even small amounts of correlation. Results from the 2383-bus Polish test case under various load levels illustrate the substantial impact that correlation has on blackout risk.  more » « less
Award ID(s):
1735513
PAR ID:
10081645
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2018 Power Systems Computation Conference (PSCC)
Page Range / eLocation ID:
1 to 7
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Climate extremes, such as hurricanes, combined with large-scale integration of environment-sensitive renewables, could exacerbate the risk of widespread power outages. We introduce a coupled climate-energy model for cascading power outages, which comprehensively captures the impacts of climate extremes on renewable generation, and transmission and distribution networks. The model is validated with the 2022 Puerto Rico catastrophic blackout during Hurricane Fiona – a unique system-wide blackout event with complete records of weather-induced outages. The model reveals a resilience pattern that was not captured by the previous models: early failure of certain critical components enhances overall system resilience. Sensitivity analysis on various scenarios of behind-the-meter solar integration demonstrates that lower integration levels (below 45%, including the current level) exhibit minimal impact on system resilience in this event. However, surpassing this critical level without pairing it with energy storage can exacerbate the probability of catastrophic blackouts. 
    more » « less
  2. Smart grids can be vulnerable to attacks and accidents, and any initial failures in smart grids can grow to a large blackout because of cascading failure. Because of the importance of smart grids in modern society, it is crucial to protect them against cascading failures. Simulation of cascading failures can help identify the most vulnerable transmission lines and guide prioritization in protection planning, hence, it is an effective approach to protect smart grids from cascading failures. However, due to the enormous number of ways that the smart grids may fail initially, it is infeasible to simulate cascading failures at a large scale nor identify the most vulnerable lines efficiently. In this paper, we aim at 1) developing a method to run cascading failure simulations at scale and 2) building simplified, diffusion based cascading failure models to support efficient and theoretically bounded identification of most vulnerable lines. The goals are achieved by first constructing a novel connection between cascading failures and natural languages, and then adapting the powerful transformer model in NLP to learn from cascading failure data. Our trained transformer models have good accuracy in predicting the total number of failed lines in a cascade and identifying the most vulnerable lines. We also constructed independent cascade (IC) diffusion models based on the attention matrices of the transformer models, to support efficient vulnerability analysis with performance bounds. 
    more » « less
  3. Security concerns have been raised about cascading failure risks in evolving power grids. This paper reveals, for the first time, that the risk of cascading failures can be increased at low network demand levels when considering security-constrained generation dispatch. This occurs because critical transmission cor- ridors become very highly loaded due to the presence of central- ized generation dispatch, e.g., large thermal plants far from de- mand centers. This increased cascading risk is revealed in this work by incorporating security-constrained generation dispatch into the risk assessment and mitigation of cascading failures. A se- curity-constrained AC optimal power flow, which considers eco- nomic functions and security constraints (e.g., network con- straints, 𝑵 − 𝟏 security, and generation margin), is used to pro- vide a representative day-ahead operational plan. Cascading fail- ures are simulated using two simulators, a quasi-steady state DC power flow model, and a dynamic model incorporating all fre- quency-related dynamics, to allow for result comparison and ver- ification. The risk assessment procedure is illustrated using syn- thetic networks of 200 and 2,000 buses. Further, a novel preventive mitigation measure is proposed to first identify critical lines, whose failures are likely to trigger cascading failures, and then to limit power flow through these critical lines during dispatch. Results show that shifting power equivalent to 1% of total demand from critical lines to other lines can reduce cascading risk by up to 80%. 
    more » « less
  4. Abstract Tropical cyclones (TCs) have caused extensive power outages. The impacts of TC-caused blackouts may worsen in the future as TCs and heatwaves intensify. Here we couple TC and heatwave projections and power outage and recovery process analysis to investigate how TC-blackout-heatwave compound hazard risk may vary in a changing climate, with Harris County, Texas as an example. We find that, under the high-emissions scenario RCP8.5, long-duration heatwaves following strong TCs may increase sharply. The expected percentage of Harris residents experiencing at least one longer-than-5-day TC-blackout-heatwave compound hazard in a 20-year period could increase dramatically by a factor of 23 (from 0.8% to 18.2%) over the 21 st century. We also reveal that a moderate enhancement of the power distribution network can significantly mitigate the compound hazard risk. Thus, climate adaptation actions, such as strategically undergrounding distribution network and developing distributed energy sources, are urgently needed to improve coastal power system resilience. 
    more » « less
  5. Risk assessment of power system failures induced by low-frequency, high-impact rare events is of paramount importance to power system planners and operators. In this paper, we develop a cost-effective multi-surrogate method based on multifidelity model for assessing risks in probabilistic power-flow analysis under rare events. Specifically, multiple polynomial-chaos-expansion-based surrogate models are constructed to reproduce power system responses to the stochastic changes of the load and the random occurrence of component outages. These surrogates then propagate a large number of samples at negligible computation cost and thus efficiently screen out the samples associated with high-risk rare events. The results generated by the surrogates, however, may be biased for the samples located in the low-probability tail regions that are critical to power system risk assessment. To resolve this issue, the original high-fidelity power system model is adopted to fine-tune the estimation results of low-fidelity surrogates by reevaluating only a small portion of the samples. This multifidelity model approach greatly improves the computational efficiency of the traditional Monte Carlo method used in computing the risk-event probabilities under rare events without sacrificing computational accuracy. 
    more » « less