skip to main content


Title: Learning Accuracy Analysis of Memristor-based Nonlinear Computing Module on Long Short-term Memory
To accelerate the training efficiency of neural network-based machine learning, a memristor-based nonlinear computing module is designed and analyzed. Nonlinear computing operation is widely needed in neuromorphic computing and deep learning. The proposed nonlinear computing module can potentially realize a monotonic nonlinear function by successively placing memristors in a series combing with a simple amplifier. The proposed module is evaluated and optimized through the Long Short-term Memory with the digit number recognition application. The proposed nonlinear computing module can reduce the chip area from microscale to nanoscale, and potentially enhance the computing efficiency to O(1) while guaranteeing accuracy. Furthermore, the impact of the resistance variation of memristor switching on the training accuracy is simulated and analyzed using Long Short-term Memory as a benchmark.  more » « less
Award ID(s):
1750450
NSF-PAR ID:
10082430
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of Neuromorphic Computing Symposium
Page Range / eLocation ID:
1 to 7
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Artificial Intelligence (AI) is moving towards the edge. Training an AI model for edge computing on a centralized server increases latency, and the privacy of edge users is jeopardized due to private data transfer through a less secure communication channels. Additionally, existing high-power computing systems are battling with memory and data transfer bottlenecks between the processor and memory. Federated Learning (FL) is a collaborative AI learning paradigm for distributed local devices that operates without transferring local data. Local participant devices share the updated network parameters with the central server instead of sending the original data. The central server updates the global AI model and deploys the model to the local clients. As the local data resides only on the edge, these devices need to be protected from cyberattacks. The Federated Intrusion Detection System (FIDS) could be a viable system to protect edge devices as opposed to a centralized protection system. However, on-device training of the model in resource constrained devices may suffer from excessive power drain, in addition to memory and area overhead. In this work we present a memristor based system for AI training on edge devices. Memristor devices are ideal candidates for processing in memory, as their dynamic resistance properties allow them to perform multiply-add operations in parallel in the analog domain with extreme efficiency. Alternatively, existing CMOS-based PIM systems are typically developed for edge inference based on pretrained weights, and are not equipped for on-chip training. We show the effectiveness of the system, where successful learning and recognition is achieved completely within edge devices. The classification accuracy of the memristor system shows negligible loss when compared a software implementation. To the best of our knowledge, this first demonstration of a memristor based federated learning system. We demonstrate the effectiveness of this system as an intrusion detection platform for edge devices, although given the flexibility of the learning algorithm, it could be used to enhance many types of on board leaning and classification applications. 
    more » « less
  2. Obeid, Iyad Selesnick (Ed.)
    Electroencephalography (EEG) is a popular clinical monitoring tool used for diagnosing brain-related disorders such as epilepsy [1]. As monitoring EEGs in a critical-care setting is an expensive and tedious task, there is a great interest in developing real-time EEG monitoring tools to improve patient care quality and efficiency [2]. However, clinicians require automatic seizure detection tools that provide decisions with at least 75% sensitivity and less than 1 false alarm (FA) per 24 hours [3]. Some commercial tools recently claim to reach such performance levels, including the Olympic Brainz Monitor [4] and Persyst 14 [5]. In this abstract, we describe our efforts to transform a high-performance offline seizure detection system [3] into a low latency real-time or online seizure detection system. An overview of the system is shown in Figure 1. The main difference between an online versus offline system is that an online system should always be causal and has minimum latency which is often defined by domain experts. The offline system, shown in Figure 2, uses two phases of deep learning models with postprocessing [3]. The channel-based long short term memory (LSTM) model (Phase 1 or P1) processes linear frequency cepstral coefficients (LFCC) [6] features from each EEG channel separately. We use the hypotheses generated by the P1 model and create additional features that carry information about the detected events and their confidence. The P2 model uses these additional features and the LFCC features to learn the temporal and spatial aspects of the EEG signals using a hybrid convolutional neural network (CNN) and LSTM model. Finally, Phase 3 aggregates the results from both P1 and P2 before applying a final postprocessing step. The online system implements Phase 1 by taking advantage of the Linux piping mechanism, multithreading techniques, and multi-core processors. To convert Phase 1 into an online system, we divide the system into five major modules: signal preprocessor, feature extractor, event decoder, postprocessor, and visualizer. The system reads 0.1-second frames from each EEG channel and sends them to the feature extractor and the visualizer. The feature extractor generates LFCC features in real time from the streaming EEG signal. Next, the system computes seizure and background probabilities using a channel-based LSTM model and applies a postprocessor to aggregate the detected events across channels. The system then displays the EEG signal and the decisions simultaneously using a visualization module. The online system uses C++, Python, TensorFlow, and PyQtGraph in its implementation. The online system accepts streamed EEG data sampled at 250 Hz as input. The system begins processing the EEG signal by applying a TCP montage [8]. Depending on the type of the montage, the EEG signal can have either 22 or 20 channels. To enable the online operation, we send 0.1-second (25 samples) length frames from each channel of the streamed EEG signal to the feature extractor and the visualizer. Feature extraction is performed sequentially on each channel. The signal preprocessor writes the sample frames into two streams to facilitate these modules. In the first stream, the feature extractor receives the signals using stdin. In parallel, as a second stream, the visualizer shares a user-defined file with the signal preprocessor. This user-defined file holds raw signal information as a buffer for the visualizer. The signal preprocessor writes into the file while the visualizer reads from it. Reading and writing into the same file poses a challenge. The visualizer can start reading while the signal preprocessor is writing into it. To resolve this issue, we utilize a file locking mechanism in the signal preprocessor and visualizer. Each of the processes temporarily locks the file, performs its operation, releases the lock, and tries to obtain the lock after a waiting period. The file locking mechanism ensures that only one process can access the file by prohibiting other processes from reading or writing while one process is modifying the file [9]. The feature extractor uses circular buffers to save 0.3 seconds or 75 samples from each channel for extracting 0.2-second or 50-sample long center-aligned windows. The module generates 8 absolute LFCC features where the zeroth cepstral coefficient is replaced by a temporal domain energy term. For extracting the rest of the features, three pipelines are used. The differential energy feature is calculated in a 0.9-second absolute feature window with a frame size of 0.1 seconds. The difference between the maximum and minimum temporal energy terms is calculated in this range. Then, the first derivative or the delta features are calculated using another 0.9-second window. Finally, the second derivative or delta-delta features are calculated using a 0.3-second window [6]. The differential energy for the delta-delta features is not included. In total, we extract 26 features from the raw sample windows which add 1.1 seconds of delay to the system. We used the Temple University Hospital Seizure Database (TUSZ) v1.2.1 for developing the online system [10]. The statistics for this dataset are shown in Table 1. A channel-based LSTM model was trained using the features derived from the train set using the online feature extractor module. A window-based normalization technique was applied to those features. In the offline model, we scale features by normalizing using the maximum absolute value of a channel [11] before applying a sliding window approach. Since the online system has access to a limited amount of data, we normalize based on the observed window. The model uses the feature vectors with a frame size of 1 second and a window size of 7 seconds. We evaluated the model using the offline P1 postprocessor to determine the efficacy of the delayed features and the window-based normalization technique. As shown by the results of experiments 1 and 4 in Table 2, these changes give us a comparable performance to the offline model. The online event decoder module utilizes this trained model for computing probabilities for the seizure and background classes. These posteriors are then postprocessed to remove spurious detections. The online postprocessor receives and saves 8 seconds of class posteriors in a buffer for further processing. It applies multiple heuristic filters (e.g., probability threshold) to make an overall decision by combining events across the channels. These filters evaluate the average confidence, the duration of a seizure, and the channels where the seizures were observed. The postprocessor delivers the label and confidence to the visualizer. The visualizer starts to display the signal as soon as it gets access to the signal file, as shown in Figure 1 using the “Signal File” and “Visualizer” blocks. Once the visualizer receives the label and confidence for the latest epoch from the postprocessor, it overlays the decision and color codes that epoch. The visualizer uses red for seizure with the label SEIZ and green for the background class with the label BCKG. Once the streaming finishes, the system saves three files: a signal file in which the sample frames are saved in the order they were streamed, a time segmented event (TSE) file with the overall decisions and confidences, and a hypotheses (HYP) file that saves the label and confidence for each epoch. The user can plot the signal and decisions using the signal and HYP files with only the visualizer by enabling appropriate options. For comparing the performance of different stages of development, we used the test set of TUSZ v1.2.1 database. It contains 1015 EEG records of varying duration. The any-overlap performance [12] of the overall system shown in Figure 2 is 40.29% sensitivity with 5.77 FAs per 24 hours. For comparison, the previous state-of-the-art model developed on this database performed at 30.71% sensitivity with 6.77 FAs per 24 hours [3]. The individual performances of the deep learning phases are as follows: Phase 1’s (P1) performance is 39.46% sensitivity and 11.62 FAs per 24 hours, and Phase 2 detects seizures with 41.16% sensitivity and 11.69 FAs per 24 hours. We trained an LSTM model with the delayed features and the window-based normalization technique for developing the online system. Using the offline decoder and postprocessor, the model performed at 36.23% sensitivity with 9.52 FAs per 24 hours. The trained model was then evaluated with the online modules. The current performance of the overall online system is 45.80% sensitivity with 28.14 FAs per 24 hours. Table 2 summarizes the performances of these systems. The performance of the online system deviates from the offline P1 model because the online postprocessor fails to combine the events as the seizure probability fluctuates during an event. The modules in the online system add a total of 11.1 seconds of delay for processing each second of the data, as shown in Figure 3. In practice, we also count the time for loading the model and starting the visualizer block. When we consider these facts, the system consumes 15 seconds to display the first hypothesis. The system detects seizure onsets with an average latency of 15 seconds. Implementing an automatic seizure detection model in real time is not trivial. We used a variety of techniques such as the file locking mechanism, multithreading, circular buffers, real-time event decoding, and signal-decision plotting to realize the system. A video demonstrating the system is available at: https://www.isip.piconepress.com/projects/nsf_pfi_tt/resources/videos/realtime_eeg_analysis/v2.5.1/video_2.5.1.mp4. The final conference submission will include a more detailed analysis of the online performance of each module. ACKNOWLEDGMENTS Research reported in this publication was most recently supported by the National Science Foundation Partnership for Innovation award number IIP-1827565 and the Pennsylvania Commonwealth Universal Research Enhancement Program (PA CURE). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the official views of any of these organizations. REFERENCES [1] A. Craik, Y. He, and J. L. Contreras-Vidal, “Deep learning for electroencephalogram (EEG) classification tasks: a review,” J. Neural Eng., vol. 16, no. 3, p. 031001, 2019. https://doi.org/10.1088/1741-2552/ab0ab5. [2] A. C. Bridi, T. Q. Louro, and R. C. L. Da Silva, “Clinical Alarms in intensive care: implications of alarm fatigue for the safety of patients,” Rev. Lat. Am. Enfermagem, vol. 22, no. 6, p. 1034, 2014. https://doi.org/10.1590/0104-1169.3488.2513. [3] M. Golmohammadi, V. Shah, I. Obeid, and J. Picone, “Deep Learning Approaches for Automatic Seizure Detection from Scalp Electroencephalograms,” in Signal Processing in Medicine and Biology: Emerging Trends in Research and Applications, 1st ed., I. Obeid, I. Selesnick, and J. Picone, Eds. New York, New York, USA: Springer, 2020, pp. 233–274. https://doi.org/10.1007/978-3-030-36844-9_8. [4] “CFM Olympic Brainz Monitor.” [Online]. Available: https://newborncare.natus.com/products-services/newborn-care-products/newborn-brain-injury/cfm-olympic-brainz-monitor. [Accessed: 17-Jul-2020]. [5] M. L. Scheuer, S. B. Wilson, A. Antony, G. Ghearing, A. Urban, and A. I. Bagic, “Seizure Detection: Interreader Agreement and Detection Algorithm Assessments Using a Large Dataset,” J. Clin. Neurophysiol., 2020. https://doi.org/10.1097/WNP.0000000000000709. [6] A. Harati, M. Golmohammadi, S. Lopez, I. Obeid, and J. Picone, “Improved EEG Event Classification Using Differential Energy,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium, 2015, pp. 1–4. https://doi.org/10.1109/SPMB.2015.7405421. [7] V. Shah, C. Campbell, I. Obeid, and J. Picone, “Improved Spatio-Temporal Modeling in Automated Seizure Detection using Channel-Dependent Posteriors,” Neurocomputing, 2021. [8] W. Tatum, A. Husain, S. Benbadis, and P. Kaplan, Handbook of EEG Interpretation. New York City, New York, USA: Demos Medical Publishing, 2007. [9] D. P. Bovet and C. Marco, Understanding the Linux Kernel, 3rd ed. O’Reilly Media, Inc., 2005. https://www.oreilly.com/library/view/understanding-the-linux/0596005652/. [10] V. Shah et al., “The Temple University Hospital Seizure Detection Corpus,” Front. Neuroinform., vol. 12, pp. 1–6, 2018. https://doi.org/10.3389/fninf.2018.00083. [11] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach. Learn. Res., vol. 12, pp. 2825–2830, 2011. https://dl.acm.org/doi/10.5555/1953048.2078195. [12] J. Gotman, D. Flanagan, J. Zhang, and B. Rosenblatt, “Automatic seizure detection in the newborn: Methods and initial evaluation,” Electroencephalogr. Clin. Neurophysiol., vol. 103, no. 3, pp. 356–362, 1997. https://doi.org/10.1016/S0013-4694(97)00003-9. 
    more » « less
  3. Introduction: Computed tomography perfusion (CTP) imaging requires injection of an intravenous contrast agent and increased exposure to ionizing radiation. This process can be lengthy, costly, and potentially dangerous to patients, especially in emergency settings. We propose MAGIC, a multitask, generative adversarial network-based deep learning model to synthesize an entire CTP series from only a non-contrasted CT (NCCT) input. Materials and Methods: NCCT and CTP series were retrospectively retrieved from 493 patients at UF Health with IRB approval. The data were deidentified and all images were resized to 256x256 pixels. The collected perfusion data were analyzed using the RapidAI CT Perfusion analysis software (iSchemaView, Inc. CA) to generate each CTP map. For each subject, 10 CTP slices were selected. Each slice was paired with one NCCT slice at the same location and two NCCT slices at a predefined vertical offset, resulting in 4.3K CTP images and 12.9K NCCT images used for training. The incorporation of a spatial offset into the NCCT input allows MAGIC to more accurately synthesize cerebral perfusive structures, increasing the quality of the generated images. The studies included a variety of indications, including healthy tissue, mild infarction, and severe infarction. The proposed MAGIC model incorporates a novel multitask architecture, allowing for the simultaneous synthesis of four CTP modalities: mean transit time (MTT), cerebral blood flow (CBF), cerebral blood volume (CBV), and time to peak (TTP). We propose a novel Physicians-in-the-loop module in the model's architecture, acting as a tunable layer that allows physicians to manually adjust the amount of anatomic detail present in the synthesized CTP series. Additionally, we propose two novel loss terms: multi-modal connectivity loss and extrema loss. The multi-modal connectivity loss leverages the multi-task nature to assert that the mathematical relationship between MTT, CBF, and CBV is satisfied. The extrema loss aids in learning regions of elevated and decreased activity in each modality, allowing for MAGIC to accurately learn the characteristics of diagnostic regions of interest. Corresponding NCCT and CTP slices were paired along the vertical axis. The model was trained for 100 epochs on a NVIDIA TITAN X GPU. Results and Discussion: The MAGIC model’s performance was evaluated on a sample of 40 patients from the UF Health dataset. Across all CTP modalities, MAGIC was able to accurately produce images with high structural agreement between the entire synthesized and clinical perfusion images (SSIMmean=0.801 , UQImean=0.926). MAGIC was able to synthesize CTP images to accurately characterize cerebral circulatory structures and identify regions of infarct tissue, as shown in Figure 1. A blind binary evaluation was conducted to assess the presence of cerebral infarction in both the synthesized and clinical perfusion images, resulting in the synthesized images correctly predicting the presence of cerebral infarction with 87.5% accuracy. Conclusions: We proposed a MAGIC model whose novel deep learning structures and loss terms enable high-quality synthesis of CTP maps and characterization of circulatory structures solely from NCCT images, potentially eliminating the requirement for the injection of an intravenous contrast agent and elevated radiation exposure during perfusion imaging. This makes MAGIC a beneficial tool in a clinical scenario increasing the overall safety, accessibility, and efficiency of cerebral perfusion and facilitating better patient outcomes. Acknowledgements: This work was partially supported by the National Science Foundation, IIS-1908299 III: Small: Modeling Multi-Level Connectivity of Brain Dynamics + REU Supplement, to the University of Florida. 
    more » « less
  4. Abstract

    Artificial synaptic devices are the essential hardware component in emerging neuromorphic computing systems by mimicking biological synapse and brain functions. When made from natural organic materials such as protein and carbohydrate, they have potential to improve sustainability and reduce electronic waste by enabling environmentally‐friendly disposal. In this paper, a new natural organic memristor based artificial synaptic device is reported with the memristive film processed by a honey and carbon nanotube (CNT) admixture, that is, honey‐CNT memristor. Optical microscopy, scanning electron microscopy, and micro‐Raman spectroscopy are employed to analyze the morphology and chemical structure of the honey‐CNT film. The device demonstrates analog memristive potentiation and depression, with the mechanism governing these functions explained by the formation and dissolution of conductive paths due to the electrochemical metal filaments which are assisted by CNT clusters and bundles in the honey‐CNT film. The honey‐CNT memristor successfully emulates synaptic functionalities such as short‐term plasticity and its transition to long‐term plasticity for memory rehearsal, spatial summation, and shunting inhibition, and for the first time, the classical conditioning behavior for associative learning by mimicking the Pavlov's dog experiment. All these results testify that honey‐CNT memristor based artificial synaptic device is promising for energy‐efficient and eco‐friendly neuromorphic systems.

     
    more » « less
  5. When deep neural network (DNN) is extensively utilized for edge AI (Artificial Intelligence), for example, the Internet of things (IoT) and autonomous vehicles, it makes CMOS (Complementary Metal Oxide Semiconductor)-based conventional computers suffer from overly large computing loads. Memristor-based devices are emerging as an option to conduct computing in memory for DNNs to make them faster, much more energy efficient, and accurate. Despite having excellent properties, the memristor-based DNNs are yet to be commercially available because of Stuck-At-Fault (SAF) defects. A Mapping Transformation (MT) method is proposed in this paper to mitigate Stuck-at-Fault (SAF) defects from memristor-based DNNs. First, the weight distribution for the VGG8 model with the CIFAR10 dataset is presented and analyzed. Then, the MT method is used for recovering inference accuracies at 0.1% to 50% SAFs with two typical cases, SA1 (Stuck-At-One): SA0 (Stuck-At-Zero) = 5:1 and 1:5, respectively. The experiment results show that the MT method can recover DNNs to their original inference accuracies (90%) when the ratio of SAFs is smaller than 2.5%. Moreover, even when the SAF is in the extreme condition of 50%, it is still highly efficient to recover the inference accuracy to 80% and 21%. What is more, the MT method acts as a regulator to avoid energy and latency overhead generated by SAFs. Finally, the immunity of the MT Method against non-linearity is investigated, and we conclude that the MT method can benefit accuracy, energy, and latency even with high non-linearity LTP = 4 and LTD = −4. 
    more » « less