skip to main content


Title: Real-time Rolling Horizon Energy Management for the Energy-Hub-Coordinated Prosumer Community from a Cooperative Perspective
The concept of Energy Hub has been proposed to facilitate the synergies among different forms of energy carriers. Under the new electricity market environment, it is of great significance to build a win-win situation for prosumers and Hub manager (HM) at the level of community without bringing extra burden to the utility grid. This paper proposes a cooperative trading mode for a community-level energy system (CES), which consists of Energy Hub (EH) and PV prosumers with the automatic demand response (DR) capability. In the cooperative trading framework, a real-time rolling horizon energy management model is proposed based on cooperative game theory considering the stochastic characteristics of PV prosumers and the conditional value at risk (CVaR). The validity of the proposed model is analyzed through the optimality proof of the grand coalition. A contribution-based profit distribution scheme and its stability proof are also provided. Moreover, in order to solve the optimization model, it is further transformed into a more easily resolved mixed integer linear programming (MILP) model by adding auxiliary variables. Finally, via a practical example, the effectiveness of the model is verified in terms of promoting local consumption of PV energy, increasing HM's profits, and reducing prosumers' costs, etc.  more » « less
Award ID(s):
1650470 1747757
NSF-PAR ID:
10082512
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE Transactions on Power Systems
ISSN:
0885-8950
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Peer-to-peer (P2P) energy trading is a decentralized energy market where local energy prosumers act as peers, trading energy among each other. Existing works in this area largely overlook the importance of user behavioral modeling, assume users’ sustained active participation, and full compliance in the decision-making process. To overcome these unrealistic assumptions, and their deleterious consequences, in this paper we propose an automated P2P energy trading framework that specifically considers the users’ perception by exploiting prospect theory . We formalize an optimization problem that maximizes the buyers’ perceived utility while matching energy production and demand. We prove that the problem is NP-hard and we propose a Differential Evolution-based Algorithm for Trading Energy ( DEbATE ) heuristic. Additionally, we propose two automated pricing solutions to improve the sellers’ profit based on reinforcement learning. The first solution, named Pricing mechanism with Q-learning and Risk-sensitivity ( PQR ), is based on Q-learning. Additionally, the given scalability issues of PQR , we propose a Deep Q-Network-based algorithm called ProDQN that exploits deep learning and a novel loss function rooted in prospect theory. Results based on real traces of energy consumption and production, as well as realistic prospect theory functions, show that our approaches achieve \(26\% \) higher perceived value for buyers and generate \(7\% \) more reward for sellers, compared to recent state-of-the-art approaches. 
    more » « less
  2. Translating information between the domains of systematics and conservation requires novel information management designs. Such designs should improve interactions across the trading zone between the domains, herein understood as the model according to which knowledge and uncertainty are productively translated in both directions (cf. Collins et al. 2019). Two commonly held attitudes stand in the way of designing a well-functioning systematics-to-conservation trading zone. On one side, there are calls to unify the knowledge signal produced by systematics, underpinned by the argument that such unification is a necessary precondition for conservation policy to be reliably expressed and enacted (e.g., Garnett et al. 2020). As a matter of legal scholarship, the argument for systematic unity by legislative necessity is principally false (Weiss 2003, MacNeil 2009, Chromá 2011), but perhaps effective enough as a strategy to win over audiences unsure about robust law-making practices in light of variable and uncertain knowledge. On the other side, there is an attitude that conservation cannot ever restrict the academic freedom of systematics as a scientific discipline (e.g., Raposo et al. 2017). This otherwise sound argument misses the mark in the context of designing a productive trading zone with conservation. The central interactional challenge is not whether the systematic knowledge can vary at a given time and/or evolve over time, but whether these signal dynamics are tractable in ways that actors can translate into robust maxims for conservation. Redesigning the trading zone should rest on the (historically validated) projection that systematics will continue to attract generations of inspired, productive researchers and broad-based societal support, frequently leading to protracted conflicts and dramatic shifts in how practioners in the field organize and identify organismal lineages subject to conservation. This confident outlook for systematics' future, in turn, should refocus the challenge of designing the trading zone as one of building better information services to model the concurrent conflicts and longer-term evolution of systematic knowledge. It would seem unreasonable to expect the International Union for Conservation of Nature (IUCN) Red List Index to develop better data science models for the dynamics of systematic knowledge (cf. Hoffmann et al. 2011) than are operational in the most reputable information systems designed and used by domain experts (Burgin et al. 2018). The reasonable challenge from conservation to systematics is not to stop being a science but to be a better data science. In this paper, we will review advances in biodiversity data science in relation to representing and reasoning over changes in systematic knowledge with computational logic, i.e., modeling systematic intelligence (Franz et al. 2016). We stress-test this approach with a use case where rapid systematic signal change and high stakes for conservation action intersect, i.e., the Malagasy mouse lemurs ( Microcebus É. Geoffroy, 1834 sec. Schüßler et al. 2020), where the number of recognized species-level concepts has risen from 2 to 25 in the span of 38 years (1982–2020). As much as scientifically defensible, we extend our modeling approach to the level of individual published occurrence records, where the inability to do so sometimes reflects substandard practice but more importantly reveals systemic inadequacies in biodiversity data science or informational modeling. In the absence of shared, sound theoretical foundations to assess taxonomic congruence or incongruence across treatments, and in the absence of biodiversity data platforms capable of propagating logic-enabled, scalable occurrence-to-concept identification events to produce alternative and succeeding distribution maps, there is no robust way to provide a knowledge signal from systematics to conservation that is both consistent in its syntax and acccurate in its semantics, in the sense of accurately reflecting the variation and uncertainty that exists across multiple systematic perspectives. Translating this diagnosis into new designs for the trading zone is only one "half" of the solution, i.e., a technical advancement that then would need to be socially endorsed and incentivized by systematic and conservation communities motivated to elevate their collaborative interactions and trade robustly in inherently variable and uncertain information. 
    more » « less
  3. Blockchain is a decentralized, digital, and distributed ledger which allows transparent and secure information sharing among the peer-to-peer network. It eliminates the need for a centralized trusted party and, though it was introduced as the backbone technology for cryptocurrencies but has proved to be a promising and revolutionary technology for almost all global industries. The application of blockchain technology in the energy sector proposes a paradigm of solutions to problems of different levels of complexity in the traditional energy ecosystem. Extensive research has been proposed to exploit the inherent benefits of blockchain technology for the integration of distributed energy sources and facilitate peer-to-peer energy trading. This paper proposes a blockchain-based architecture to facilitate secure and decentralized energy trading generated from renewable energy sources. The solution utilizes the Ethereum blockchain and Smart Contracts for energy trading among the members of a small community without any trusted third entity and adopts features to achieve data integrity and confidentiality, and user identity privacy. 
    more » « less
  4. Rooftop photovoltaics (PV) and electrical vehicles (EV) have become more economically viable to residential customers. Most existing home energy management systems (HEMS) only focus on the residential occupants’ thermal comfort in terms of indoor temperature and humidity while neglecting their other behaviors or concerns. This paper aims to integrate residential PV and EVs into the HEMS in an occupant-centric manner while taking into account the occupants’ thermal comfort, clothing behaviors, and concerns on the state-of-charge (SOC) of EVs. A stochastic adaptive dynamic programming (ADP) model was proposed to optimally determine the setpoints of heating, ventilation, air conditioning (HVAC), occupant’s clothing decisions, and the EV’s charge/discharge schedule while considering uncertainties in the outside temperature, PV generation, and EV’s arrival SOC. The nonlinear and nonconvex thermal comfort model, EV SOC concern model, and clothing behavior model were holistically embedded in the ADP-HEMS model. A model predictive control framework was further proposed to simulate a residential house under the time of use tariff, such that it continually updates with optimal appliance schedules decisions passed to the house model. Cosimulations were carried out to compare the proposed HEMS with a baseline model that represents the current operational practice. The result shows that the proposed HEMS can reduce the energy cost by 68.5% while retaining the most comfortable thermal level and negligible EV SOC concerns considering the occupant’s behaviors. 
    more » « less
  5. Abstract

    Prosumers adopt distributed energy resources (DER) to cover part of their own consumption and to sell surplus energy. Although individual prosumers are too dispersed to exert operational market power, they may collectively hold a strategic advantage over conventional generation in selecting DER capacity via aggregators. We devise a bilevel model to examine DER capacity sizing by a collective prosumer as a Stackelberg leader in an electricity industry where conventional generation may exert market power in operations. At the upper level, the prosumer chooses DER capacity in anticipation of lower-level operations by conventional generation and DER output. We demonstrate that exertion of market power in operations by conventional generation and the marginal cost of conventional generation affect DER investment by the prosumer in a nonmonotonic manner. Intuitively, in an industry where conventional generation exerts market power in operations similar to a monopoly (MO), the prosumer invests in more DER capacity than under perfectly competitive operations (PC) to take advantage of a high market-clearing price. However, if the marginal cost of conventional generation is high enough, then this intuitive result is reversed as the prosumer adopts more DER capacity under PC than under MO. This is because the high marginal cost of conventional generation prevents the market-clearing price from decreasing, thereby allowing for higher prosumer revenues. Moreover, competition relieves the chokehold on consumption under MO, which further incentivises the prosumer to expand DER capacity to capture market share. We prove the existence of a critical threshold for the marginal cost of conventional generation that leads to this counterintuitive result. Finally, we propose a countervailing regulatory mechanism that yields welfare-enhancing DER investment even in deregulated electricity industries.

     
    more » « less