skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Showing versus doing: Teaching by demonstration
People often learn from others’ demonstrations, and inverse reinforcement learning (IRL) techniques have realized this capacity in machines. In contrast, teaching by demonstration has been less well studied computationally. Here, we develop a Bayesian model for teaching by demonstration. Stark differences arise when demonstrators are intentionally teaching (i.e. showing) a task versus simply performing (i.e. doing) a task. In two experiments, we show that human participants modify their teaching behavior consistent with the predictions of our model. Further, we show that even standard IRL algorithms benefit when learning from showing versus doing.  more » « less
Award ID(s):
1643413
PAR ID:
10082788
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
NeurIPS
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many imitation learning (IL) algorithms use inverse reinforcement learning (IRL) to infer a reward function that aligns with the demonstration. However, the inferred reward functions often fail to capture the underlying task objectives. In this paper, we propose a novel framework for IRL-based IL that prioritizes task alignment over conventional data alignment. Our framework is a semi-supervised approach that leverages expert demonstrations as weak supervision to derive a set of candidate reward functions that align with the task rather than only with the data. It then adopts an adversarial mechanism to train a policy with this set of reward functions to gain a collective validation of the policy's ability to accomplish the task. We provide theoretical insights into this framework's ability to mitigate task-reward misalignment and present a practical implementation. Our experimental results show that our framework outperforms conventional IL baselines in complex and transfer learning scenarios. 
    more » « less
  2. When observing others’ behavior, people use Theory of Mind to infer unobservable beliefs, desires, and intentions. And when showing what activity one is doing, people will modify their behavior in order to facilitate more accurate interpretation and learning by an observer. Here, we present a novel model of how demonstrators act and observers interpret demonstrations corresponding to different levels of recursive social reasoning (i.e. a cognitive hierarchy) grounded in Theory of Mind. Our model can explain how demonstrators show others how to perform a task and makes predictions about how sophisticated observers can reason about communicative intentions. Additionally, we report an experiment that tests (1) how well an observer can learn from demonstrations that were produced with the intent to communicate, and (2) how an observer’s interpretation of demonstrations influences their judgments. 
    more » « less
  3. This paper presents a framework to learn the reward function underlying high-level sequential tasks from demonstrations. The purpose of reward learning, in the context of learning from demonstration (LfD), is to generate policies that mimic the demonstrator’s policies, thereby enabling imitation learning. We focus on a human-robot interaction(HRI) domain where the goal is to learn and model structured interactions between a human and a robot. Such interactions can be modeled as a partially observable Markov decision process (POMDP) where the partial observability is caused by uncertainties associated with the ways humans respond to different stimuli. The key challenge in finding a good policy in such a POMDP is determining the reward function that was observed by the demonstrator. Existing inverse reinforcement learning(IRL) methods for POMDPs are computationally very expensive and the problem is not well understood. In comparison, IRL algorithms for Markov decision process (MDP) are well defined and computationally efficient. We propose an approach of reward function learning for high-level sequential tasks from human demonstrations where the core idea is to reduce the underlying POMDP to an MDP and apply any efficient MDP-IRL algorithm. Our extensive experiments suggest that the reward function learned this way generates POMDP policies that mimic the policies of the demonstrator well. 
    more » « less
  4. We study the problem of inverse reinforcement learning (IRL), where the learning agent recovers a reward function using expert demonstrations. Most of the existing IRL techniques make the often unrealistic assumption that the agent has access to full information about the environment. We remove this assumption by developing an algorithm for IRL in partially observable Markov decision processes (POMDPs). The algorithm addresses several limitations of existing techniques that do not take the information asymmetry between the expert and the learner into account. First, it adopts causal entropy as the measure of the likelihood of the expert demonstrations as opposed to entropy in most existing IRL techniques, and avoids a common source of algorithmic complexity. Second, it incorporates task specifications expressed in temporal logic into IRL. Such specifications may be interpreted as side information available to the learner a priori in addition to the demonstrations and may reduce the information asymmetry. Nevertheless, the resulting formulation is still nonconvex due to the intrinsic nonconvexity of the so-called forward problem, i.e., computing an optimal policy given a reward function, in POMDPs. We address this nonconvexity through sequential convex programming and introduce several extensions to solve the forward problem in a scalable manner.This scalability allows computing policies that incorporate memory at the expense of added computational cost yet also outperform memoryless policies. We demonstrate that, even with severely limited data, the algorithm learns reward functions and policies that satisfy the task and induce a similar behavior to the expert by leveraging the side information and incorporating memory into the policy. 
    more » « less
  5. Learning from Demonstration (LfD) approaches empower end-users to teach robots novel tasks via demonstrations of the desired behaviors, democratizing access to robotics. However, current LfD frameworks are not capable of fast adaptation to heterogeneous human demonstrations nor the large-scale deployment in ubiquitous robotics applications. In this paper, we propose a novel LfD framework, Fast Lifelong Adaptive Inverse Reinforcement learning (FLAIR). Our approach (1) leverages learned strategies to construct policy mixtures for fast adaptation to new demonstrations, allowing for quick end-user personalization, (2) distills common knowledge across demonstrations, achieving accurate task inference; and (3) expands its model only when needed in lifelong deployments, maintaining a concise set of prototypical strategies that can approximate all behaviors via policy mixtures. We empirically validate that FLAIR achieves adaptability (i.e., the robot adapts to heterogeneous, user-specific task preferences), efficiency (i.e., the robot achieves sample-efficient adaptation), and scalability (i.e., the model grows sublinearly with the number of demonstrations while maintaining high performance). FLAIR surpasses benchmarks across three control tasks with an average 57% improvement in policy returns and an average 78% fewer episodes required for demonstration modeling using policy mixtures. Finally, we demonstrate the success of FLAIR in a table tennis task and find users rate FLAIR as having higher task (p < .05) and personalization (p < .05) performance. 
    more » « less