skip to main content


Title: A new semiconductor: Ti0.5Mg0.5N(001)
Ti0.5Mg0.5N has recently been predicted to be a semiconductor with a 1.3 eV band gap and promising properties for thermoelectric and plasmonic devices. As a first step towards experimental validation, epitaxial Ti0.5Mg0.5N(001) layers are deposited on MgO(001) by reactive magnetron co-sputtering from titanium and magnesium targets at 600 °C in pure N2 atmospheres. X-ray diffraction ω-2θ scans, ω-rocking curves, φ-scans, and high resolution reciprocal space maps show that Ti0.5Mg0.5N alloys form a pseudobinary rocksalt structure and are single crystals with a cube-on-cube epitaxial relationship with the substrate: (001)TiMgN║(001)MgO and [100]TiMgN║[100]MgO. A 275-nm-thick Ti0.5Mg0.5N layer is fully relaxed and exhibits a 002 ω-rocking curve width ω = 0.73°, while a 36-nm-thick layer is fully strained and has a ω = 0.49°. These results indicate a thickness-dependent strain state which suggests a critical thickness for misfit dislocation nucleation and glide which is between 36 and 275 nm. A measured negative temperature coefficient of resistivity in combination with a low optical absorption coefficient of 0.25 × 105 cm 1 for λ = 740 nm, and a vanishing density of states at the Fermi level measured by x-ray photoelectron spectroscopy support the prediction that Ti0.5Mg0.5N is a semiconductor.  more » « less
Award ID(s):
1712752 1629230
NSF-PAR ID:
10089435
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2018 IEEE Nanotechnology Symposium (ANTS), Albany, NY, 2018
Page Range / eLocation ID:
1 to 5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    As a promising alternative to the mainstream CoFeB/MgO system with interfacial perpendicular magnetic anisotropy (PMA),L10‐FePd and its synthetic antiferromagnet (SAF) structure with large crystalline PMA can support spintronic devices with sufficient thermal stability at sub‐5 nm sizes. However, the compatibility requirement of preparingL10‐FePd thin films on Si/SiO2wafers is still unmet. In this paper, high‐qualityL10‐FePd and its SAF on Si/SiO2wafers are prepared by coating the amorphous SiO2surface with an MgO(001) seed layer. The preparedL10‐FePd single layer and SAF stack are highly (001)‐textured, showing strong PMA, low damping, and sizeable interlayer exchange coupling, respectively. Systematic characterizations, including advanced X‐ray diffraction measurement and atomic resolution‐scanning transmission electron microscopy, are conducted to explain the outstanding performance ofL10‐FePd layers. A fully‐epitaxial growth that starts from MgO seed layer, induces the (001) texture ofL10‐FePd, and extends through the SAF spacer is observed. This study makes the vision of scalable spintronics more practical.

     
    more » « less
  2. null (Ed.)
    Rocksalt structure nitrides emerge as a promising class of semiconductors for high-temperature thermoelectric and plasmonic applications. Controlling the bandgap and strain is essential for the development of a wide variety of electronic devices. Here we use (Ti 0.5 Mg 0.5 ) 1−x Al x N as a model system to explore and demonstrate the tunability of both the bandgap and the strain state in rocksalt structure nitrides, employing a combined experimental and computational approach. (Ti 0.5 Mg 0.5 ) 1−x Al x N layers with x ≤ 0.44 deposited on MgO(001) substrates by reactive co-sputtering at 700 °C are epitaxial single crystals with a solid-solution B1 rocksalt structure. The lattice mismatch with the substrate decreases with increasing x , leading to a transition in the strain-state from partially relaxed (74% and 38% for x = 0 and 0.09) to fully strained for x ≥ 0.22. First-principles calculations employing 64-atom Special Quasirandom Structures (SQS) indicate that the lattice constant decreases linearly with x according to a = (4.308 − 0.234 x ) Å for 0 ≤ x ≤ 1. In contrast, the measured relaxed lattice parameter a o = (4.269 − 0.131 x ) Å is linear only for x ≤ 0.33, its composition dependence is less pronounced, and x > 0.44 leads to the nucleation of secondary phases. The fundamental (indirect) bandgap predicted using the same SQS supercells and the HSE06 functional increases from 1.0 to 2.6 eV for x = 0–0.75. In contrast, the onset of the measured optical absorption due to interband transitions increases only from 2.3 to 2.6 eV for x = 0–0.44, suggesting that the addition of Al in the solid solution relaxes the electron momentum conservation and causes a shift from direct to indirect gap transitions. The resistivity increases from 9.0 to 708 μΩ m at 77 K and from 6.8 to 89 μΩ m at 295 K with increasing x = 0–0.44, indicating an increasing carrier localization associated with a randomization of cation site occupation and the increasing bandgap which also causes a 33% reduction in the optical carrier concentration. The overall results demonstrate bandgap and strain engineering in rocksalt nitride semiconductors and show that, in contrast to conventional covalent semiconductors, the random cation site occupation strongly affects optical transitions. 
    more » « less
  3. Abstract This work focuses on the nature of magnetic anisotropy in 2.5–16 micron thick films of nickel ferrite (NFO) grown by liquid phase epitaxy (LPE). The technique, ideal for rapid growth of epitaxial oxide films, was utilized for films on (100) and (110) substrates of magnesium gallate (MGO). The motivation was to investigate the dependence of the growth induced anisotropy field on film thickness since submicron films of NFO were reported to show a very high anisotropy. The films grown at 850–875 C and subsequently annealed at 1000 C were found to be epitaxial, with the out-of-plane lattice constant showing unanticipated decrease with increasing film thickness and the estimated in-plane lattice constant increasing with the film thickness. The uniaxial anisotropy field H σ , estimated from X-ray diffraction data, ranged from 2.8–7.7 kOe with the films on (100) MGO having a higher H σ value than for the films on (110) MGO. Ferromagnetic resonance (FMR) measurements for in-plane and out-of-plane static magnetic field were utilized to determine both the magnetocrystalline the anisotropy field H 4 and the uniaxial anisotropy field H a . Values of H 4 range from −0.24 to −0.86 kOe. The uniaxial anisotropy field H a was an order of magnitude smaller than H σ and it decreased with increasing film thickness for NFO films on (100) MGO, but H a increased with film thickness for films on (110) MGO substrates. These observations indicate that the origin of the induced anisotropy could be attributed to several factors including (i) strain due to mismatch in the film-substrate lattice constants, (ii) possible variations in the bond lengths and bond angles in NFO during the growth process, and (iii) the strain arising from mismatch in the thermal expansion coefficients of the film and the substrate due to the high growth and annealing temperatures involved in the LPE technique. The LPE films of NFO on MGO substrates studied in this work are of interest for use in high frequency devices. 
    more » « less
  4. Poly(3,4-ethylene dioxythiophene) (PEDOT) has a high theoretical charge storage capacity, making it of interest for electrochemical applications including energy storage and water desalination. Nanoscale thin films of PEDOT are particularly attractive for these applications to enable faster charging. Recent work has demonstrated that nanoscale thin films of PEDOT can be formed using sequential gas-phase exposures via oxidative molecular layer deposition, or oMLD, which provides advantages in conformality and uniformity on high aspect ratio substrates over other deposition techniques. But to date, the electrochemical properties of these oMLD PEDOT thin films have not been well-characterized. In this work, we examine the electrochemical properties of 5–100 nm thick PEDOT films formed using 20–175 oMLD deposition cycles. We find that film thickness of oMLD PEDOT films affects the orientation of ordered domains leading to a substantial change in charge storage capacity. Interestingly, we observe a minimum in charge storage capacity for an oMLD PEDOT film thickness of ∼30 nm (60 oMLD cycles at 150 °C), coinciding with the highest degree of face-on oriented PEDOT domains as measured using grazing incidence wide angle X-ray scattering (GIWAXS). Thinner and thicker oMLD PEDOT films exhibit higher fractions of oblique (off-angle) orientations and corresponding increases in charge capacity of up to 120 mA h g −1 . Electrochemical measurements suggest that higher charge capacity in films with mixed domain orientation arise from the facile transport of ions from the liquid electrolyte into the PEDOT layer. Greater exposure of the electrolyte to PEDOT domain edges is posited to facilitate faster ion transport in these mixed domain films. These insights will inform future design of PEDOT coated high-aspect ratio structures for electrochemical energy storage and water treatment. 
    more » « less
  5. Teherani, Ferechteh H. ; Rogers, David J. (Ed.)
    We demonstrated a metal-organic chemical vapor deposition (MOCVD) of smooth, thick, and monoclinic phase-pure gallium oxide (Ga2O3) on c-plane sapphire using silicon-oxygen bonding (SiOx) as a phase stabilizer. The corundum (α), monoclinic (β), and orthorhombic (ε) phases of Ga2O3 with a bandgap in the 4.4 – 5.1 eV range, are promising materials for power semiconductor devices and deep ultraviolet (UV) solar-blind photodetectors. The MOCVD systems are extensively used for homoepitaxial growth of β-Ga2O3 on (001), (100), (010), and (¯2 01) β-Ga2O3 substrates. These substrates are rare/expensive and have very low thermal conductivity; thus, are not suitable for high-power semiconductor devices. The c-plane sapphire is typically used as a substrate for high-power devices. The β-Ga2O3 grows in the (¯2 01) direction on sapphire. In this direction, the presence of high-density oxygen dangling bonds, frequent stacking faults, twinning, and other phases and planes impede the heteroepitaxy of thick β-Ga2O3. Previously phase stabilizations with SiOx have been reported for tetragonal and monoclinic hafnia. We were able to grow ~580nm thick β-Ga2O3 on sapphire by MOCVD at 750 oC through phase stabilization using silane. The samples grown with silane have a reduction in the surface roughness and resistivity from 10.7 nm to 4.4 nm and from 371.75 Ω.cm to 135.64 Ω.cm, respectively. These samples show a pure-monoclinic phase determined by x-ray diffraction (XRD); have tensile strain determined by Raman strain mapping. These results show that a thick, phase-pure -Ga2O3 can be grown on c-plane sapphire which can be suitable for creating power devices with better thermal management. 
    more » « less